Thyroid hormone modulates renin and ANG II receptor expression in fetal sheep

2005 ◽  
Vol 289 (4) ◽  
pp. R1006-R1014 ◽  
Author(s):  
Kai Chen ◽  
Luke C. Carey ◽  
Nancy K. Valego ◽  
Jingfang Liu ◽  
James C. Rose

Fetal renin-angiotensin system (RAS) activity is developmentally regulated, increasing in late gestation toward term. At the same time, fetal hemodynamic parameters change, with blood pressure increasing and heart rate decreasing. During this period, fetal plasma thyroid hormone concentrations also increase significantly. In this study we utilized the technique of thyroidectomy (TX), which removes thyroid hormone from the circulation, to investigate the importance of thyroid hormone on the developmental changes in the RAS (in plasma, kidney, heart, and lung) and hemodynamic regulation in fetal sheep. TX was performed at 120 days of gestational age (dGA), and control fetuses were sham operated. Immediately before necropsy (∼137 dGA), fetuses were infused with isoproterenol and the hemodynamic responses were noted. TX significantly decreased plasma thyroid hormone concentrations and renal renin mRNA and renal active renin levels but did not change fetal plasma active renin levels. TX decreased both angiotensin II receptor subtype 1 (AT1) mRNA and protein levels in kidney and lung but not in the left ventricle. TX also was associated with increased ANG II receptor subtype 2 (AT2) mRNA and protein at the 44-kDa band in kidney, whereas AT2 protein was decreased at the 78-kDa level in kidney and lung tissue only. TX fetuses had significantly lower basal mean arterial blood pressures (MAP) and heart rates than controls. Isoproterenol infusion decreased MAP in TX fetuses. These findings support the hypothesis that thyroid hormone is important in modulating maturation of RAS and cardiovascular function in the late-gestation fetal sheep.

2007 ◽  
Vol 293 (2) ◽  
pp. R701-R706 ◽  
Author(s):  
Kai Chen ◽  
Luke C. Carey ◽  
Nancy K. Valego ◽  
James C. Rose

Previous studies have suggested that thyroid hormone influences maturation of the renin-angiotensin system (RAS) and cardiovascular function in the late-gestation fetal sheep. To further examine the importance of thyroid hormone in this regard, we used the technique of thyroidectomy (TX) to remove endogenous thyroid hormone from the circulation and then replaced it with physiological amounts of exogenous thyroxine. We hypothesized that the previously observed changes in RAS activity and cardiovascular function associated with TX would be normalized. TX was performed at 120 days of gestational age (dGA), and control fetuses were sham operated. After 3 days of recovery, TX fetuses were continuously intravenously infused with thyroxine until delivery by cesarean section close to term (around 138 dGA). Immediately before necropsy, fetuses were infused with isoproterenol, and the hemodynamic responses were noted. Thyroid hormone replacement normalized not only plasma triiodothyronine (T3) and thyroxine (T4) levels but also the TX-induced decreases in renal renin mRNA and renal renin content. Renal ANG II subtype receptor expression levels were also normalized for both mRNA and protein. Decreased basal heat rate and systolic blood pressure associated with TX returned to normal following replacement; however, changes in mean blood pressure and isoproterenol-induced changes in mean blood pressure were not altered. These findings demonstrate that replacement of thyroid hormone in hypothyroid sheep fetuses can restore renal ANG II receptor and renin expression and secretion to normal.


1999 ◽  
Vol 276 (1) ◽  
pp. H248-H256 ◽  
Author(s):  
Nobuya Unno ◽  
Chi H. Wong ◽  
Susan L. Jenkins ◽  
Richard A. Wentworth ◽  
Xiu-Ying Ding ◽  
...  

Ontogenic changes in baseline and 24-h rhythms of fetal arterial blood pressure (FABP) and heart rate (FHR) and their regulation by the fetal adrenal were studied in 18 fetal sheep chronically instrumented at 109–114 days gestation (GA). In the long-term study, FABP and FHR were continuously recorded from 120 days GA to spontaneous term labor (>145 days GA) in five animals. Peak times (PT) and amplitudes (Amp) of cosinor analysis were compared at 120–126, 127–133, and 134–140 days GA. Consistent, significant linear increases in FABP and linear decreases in FHR were observed in all fetuses. Significant 24-h rhythms in FABP and FHR were observed during all the time windows. In the adrenalectomy study, to test the hypothesis that fetal cortisol plays a key role in cardiovascular maturation, fetal adrenals were removed in eight animals (ADX); sham fetal adrenalectomy was performed on five animals (Con). Cortisol (4 μg/min) was infused intravenously in four ADX fetuses from day 7postsurgery for 7 days (ADX+F). No significant changes in PT and Amp in FABP and FHR were observed. Plasma cortisol levels remained low in Con and ADX fetuses (<4.9 ng/ml). Cortisol infusion increased fetal plasma cortisol to 22.3 ± 3.2 ng/ml (mean ± SE) on day 13 in ADX+F fetuses. FABP increased in control and ADX+F but not ADX fetuses; FHR decreased in control and ADX but rose in ADX+F fetuses. These results suggest that, in chronically instrumented fetal sheep at late gestation, 1) increases in FABP and decreases in FHR are maintained consistently from 120 to 140 days GA, with distinct 24-h rhythms, the PT and Amp of which remain unchanged, and 2) the physiological increase in FABP is dependent on the fetal adrenal; bilateral removal of the fetal adrenals does not prevent the ability of cortisol to produce a sustained increase in FABP.


2003 ◽  
Vol 284 (1) ◽  
pp. R51-R56 ◽  
Author(s):  
Sharla F. Young ◽  
Jennifer L. Smith ◽  
Jorge P. Figueroa ◽  
James C. Rose

Corticotroph responsiveness to arginine vasopressin (AVP) increases during late gestation in fetal sheep. The mechanism of this increase in AVP responsiveness is currently unknown but could be related to an increase in vasopressin type 1b (V1b) receptor expression in the pituitary during development. To determine if there are ontogenic changes in V1b receptor expression that may help explain the changes in ACTH responses to AVP, we studied pituitaries from three groups of fetal sheep [100, 120, or 140 days gestational age (dGA)]. V1b receptor mRNA and protein significantly decreased by 140 dGA. Peak V1b mRNA levels were detected at 100 dGA, while peak V1b protein levels were detected at 120 dGA. The reduction in V1b receptor expression in late gestation may be due to the naturally occurring peripartum increase in fetal plasma cortisol because cortisol infusion at 122–130 dGA decreased V1b receptor mRNA. Thus there is a marked decrease in the expression of the V1b receptor in the pituitary during fetal development, leaving the role of the V1b receptor in increasing AVP responsiveness uncertain.


2006 ◽  
Vol 291 (2) ◽  
pp. E214-E220 ◽  
Author(s):  
Luke C. Carey ◽  
Yixin Su ◽  
Nancy K. Valego ◽  
James C. Rose

The late-gestation plasma cortisol surge in the sheep fetus is critical for stimulating organ development and parturition. Increased adrenal responsiveness is one of the key reasons for the surge; however, the underlying mechanisms are not fully understood. Our recent studies suggest that ACTH-mediated increased expression of ACTH receptor (ACTH-R) and steroid acute regulatory protein (StAR) may play a role in enhancing responsiveness. Hence, we examined effects of ACTH infusion in fetal sheep on mRNA expression of these two mediators of adrenal responsiveness and assessed the functional consequences of this treatment in vitro. Fetuses of ∼118 and 138 days of gestational age (dGA) were infused with ACTH-(1–24) for 24 h. Controls received saline infusion. Arterial blood was sampled throughout the infusion. Adrenals were isolated and analyzed for ACTH-R and StAR mRNA, or cells were cultured for 48 h. Cells were stimulated with ACTH, and medium was collected for cortisol measurement. Fetal plasma ACTH and cortisol concentrations increased over the infusion period in both groups. ACTH-R mRNA levels were significantly higher in ACTH-infused fetuses in both the 118 and 138 dGA groups. StAR mRNA increased significantly in both the 118 and 138 dGA groups. Adrenal cells from ACTH-infused fetuses were significantly more responsive to ACTH stimulation in terms of cortisol secretion than those from saline-infused controls. These findings demonstrate that increases in circulating ACTH levels promote increased expression of ACTH-R and StAR mRNA and are coupled to heightened adrenal responsiveness.


2002 ◽  
Vol 283 (2) ◽  
pp. R460-R467 ◽  
Author(s):  
Jeffrey L. Segar ◽  
Timothy Van Natta ◽  
Oliva J. Smith

Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130–131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses ( n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg · day−1 · kg−1 for 10 days), whereas the other group received 0.9% NaCl vehicle ( n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140–141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 ± 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 ± 3 mmHg and RSNA increased 91 ± 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 ± 3 and 56 ± 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 ± 2 and 46 ± 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.


2004 ◽  
Vol 286 (1) ◽  
pp. R80-R88 ◽  
Author(s):  
Robert D. Roghair ◽  
Fred S. Lamb ◽  
Kurt A. Bedell ◽  
Oliva M. Smith ◽  
Thomas D. Scholz ◽  
...  

Antenatal glucocorticoids are used to promote the maturation of fetuses at risk for preterm delivery. While perinatal glucocorticoid exposure has clear immediate benefits to cardiorespiratory function, there is emerging evidence of adverse long-term effects. To determine if antenatal betamethasone alters vascular reactivity, we examined isometric contraction of endothelium-intact coronary and mesenteric arteries isolated from twin fetal sheep at 121-124 days gestation (term being 145 days). One twin received betamethasone (10 μg/h iv) while the second twin received vehicle (0.9% NaCl) for 48 h immediately before the final physiological measurements and tissue harvesting. Fetuses that received betamethasone had higher mean arterial blood pressures than the saline-treated twin controls (53 ± 1 vs. 48 ± 1 mmHg, P < 0.05). Coronary vessels from betamethasone-treated fetuses exhibited enhanced peak responses to ANG II (72 ± 17 vs. 23 ± 6% of the maximal response to 120 mM KCl, P < 0.05). There was no significant difference in response of the coronary arteries to other vasoactive compounds [KCl, U-46619, sodium nitroprusside, 8-bromo-cGMP (8-BrcGMP), isoproterenol, and forskolin]. Contractile responses to ANG II were similar in betamethasone and control mesenteric arteries (48 ± 17 vs. 36 ± 12% of the maximal response to 10-6 M U-46619). Western blot analysis revealed AT1 receptor protein expression was increased by betamethasone in coronary but not in mesenteric arteries. These findings demonstrate that antenatal betamethasone exposure enhances coronary but not mesenteric artery vasoconstriction to ANG II by selectively upregulating coronary artery AT1 receptor protein expression.


2011 ◽  
Vol 300 (6) ◽  
pp. F1301-F1309 ◽  
Author(s):  
Martha Franco ◽  
Rocio Bautista ◽  
Edilia Tapia ◽  
Virgilia Soto ◽  
José Santamaría ◽  
...  

To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with Nω-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO2−/NO3−) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.


2002 ◽  
Vol 283 (3) ◽  
pp. R669-R679 ◽  
Author(s):  
L. J. Edwards ◽  
I. C. McMillen

It has been proposed that fetal adaptations to intrauterine nutrient deprivation permanently reprogram the cardiovascular system. We investigated the impact of restricted periconceptional nutrition and/or restricted gestational nutrition on fetal arterial blood pressure (BP), heart rate, rate pressure product, and the fetal BP responses to ANG II and the angiotensin-converting enzyme inhibitor captopril during late gestation. Restricted periconceptional nutrition resulted in an increase in fetal mean arterial BP between 115 and 125 days gestation (restricted 41.5 ± 2.8 mmHg, n = 12; control 38.5 ± 1.5 mmHg, n = 13) and between 135 and 147 days gestation (restricted 50.5 ± 2.2 mmHg, n = 8; control 42.5 ± 1.9 mmHg, n = 10) as well as an increase in the rate pressure product in twin, but not singleton, fetuses between 115 and 147 days gestation. Mean BP and fetal plasma ACTH were also positively correlated in twin, but not singleton, fetuses. This is the first demonstration that maternal undernutrition during the periconceptional period results in an increase in fetal arterial BP. This increase occurs concomitantly with an increase in fetal ACTH but is not dependent on activation of the fetal renin-angiotensin system.


2005 ◽  
Vol 288 (5) ◽  
pp. R1279-R1287 ◽  
Author(s):  
Kai Chen ◽  
Luke C. Carey ◽  
Jingfang Liu ◽  
Nancy K. Valego ◽  
Stephen B. Tatter ◽  
...  

The activity of the renin-angiotensin system (RAS) increases significantly in the late-gestation fetal sheep. Fetal cortisol is also increased during this time, and it is thought that the increase in cortisol may modulate the RAS changes. Previous studies have examined the effects of cortisol infusion on RAS activity, but the effects of blocking the peripartum increase in cortisol concentrations on the developmental changes in the RAS are not known. Therefore, we utilized the technique of hypothalamic-pituitary disconnection (HPD), which prevents the cortisol surge from occurring, to investigate the importance of the late-gestation increase in cortisol on the ontogenic changes in RAS activity. HPD of fetal sheep was performed at 120 days of gestational age (dGA), and fetuses were delivered between 135 and 139 dGA. Control fetuses were sham operated. HPD blocked the late-gestation cortisol increase but did not alter renal renin mRNA, renal renin or prorenin protein content, nor plasma renin levels compared with sham operated. However, HPD fetuses had increased ANG II receptor subtype 1 (AT1) mRNA and protein expression in the kidney and lungs. ANG II receptor subtype 2 (AT2) expression was not altered in these tissues at either mRNA or protein level. HPD did not change AT1 or AT2 mRNA in the left ventricle but did result in decreased protein levels for both receptors. These studies demonstrate that blockade of the naturally occurring increase in fetal cortisol concentration in late gestation is associated with tissue-specific alterations in expression of AT1 and AT2 receptors. These changes may impact on fetal tissue maturation and hence have consequences in postnatal life.


2015 ◽  
Vol 308 (4) ◽  
pp. E306-E314 ◽  
Author(s):  
Satya S. Houin ◽  
Paul J. Rozance ◽  
Laura D. Brown ◽  
William W. Hay ◽  
Randall B. Wilkening ◽  
...  

Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 ( P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-13C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 ( P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia ( P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia.


Sign in / Sign up

Export Citation Format

Share Document