Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia

2014 ◽  
Vol 307 (7) ◽  
pp. R920-R930 ◽  
Author(s):  
James Kelly ◽  
Anni Vanhatalo ◽  
Stephen J. Bailey ◽  
Lee J. Wylie ◽  
Christopher Tucker ◽  
...  

We investigated the effects of dietary nitrate (NO3−) supplementation on the concentration of plasma nitrite ([NO2−]), oxygen uptake (V̇o2) kinetics, and exercise tolerance in normoxia (N) and hypoxia (H). In a double-blind, crossover study, 12 healthy subjects completed cycle exercise tests, twice in N (20.9% O2) and twice in H (13.1% O2). Subjects ingested either 140 ml/day of NO3−-rich beetroot juice (8.4 mmol NO3; BR) or NO3−-depleted beetroot juice (PL) for 3 days prior to moderate-intensity and severe-intensity exercise tests in H and N. Preexercise plasma [NO2−] was significantly elevated in H-BR and N-BR compared with H-PL ( P < 0.01) and N-PL ( P < 0.01). The rate of decline in plasma [NO2−] was greater during severe-intensity exercise in H-BR [−30 ± 22 nM/min, 95% confidence interval (CI); −44, −16] compared with H-PL (−7 ± 10 nM/min, 95% CI; −13, −1; P < 0.01) and in N-BR (−26 ± 19 nM/min, 95% CI; −38, −14) compared with N-PL (−1 ± 6 nM/min, 95% CI; −5, 2; P < 0.01). During moderate-intensity exercise, steady-state pulmonary V̇o2 was lower in H-BR (1.91 ± 0.28 l/min, 95% CI; 1.77, 2.13) compared with H-PL (2.05 ± 0.25 l/min, 95% CI; 1.93, 2.26; P = 0.02), and V̇o2 kinetics was faster in H-BR (τ: 24 ± 13 s, 95% CI; 15, 32) compared with H-PL (31 ± 11 s, 95% CI; 23, 38; P = 0.04). NO3− supplementation had no significant effect on V̇o2 kinetics during severe-intensity exercise in hypoxia, or during moderate-intensity or severe-intensity exercise in normoxia. Tolerance to severe-intensity exercise was improved by NO3− in hypoxia (H-PL: 197 ± 28; 95% CI; 173, 220 vs. H-BR: 214 ± 43 s, 95% CI; 177, 249; P = 0.04) but not normoxia. The metabolism of NO2− during exercise is altered by NO3− supplementation, exercise, and to a lesser extent, hypoxia. In hypoxia, NO3− supplementation enhances V̇o2 kinetics during moderate-intensity exercise and improves severe-intensity exercise tolerance. These findings may have important implications for individuals exercising at altitude.

2016 ◽  
Vol 311 (6) ◽  
pp. H1520-H1529 ◽  
Author(s):  
Sinead T. J. McDonagh ◽  
Anni Vanhatalo ◽  
Jonathan Fulford ◽  
Lee J. Wylie ◽  
Stephen J. Bailey ◽  
...  

We tested the hypothesis that dietary nitrate (NO3−)-rich beetroot juice (BR) supplementation could partially offset deteriorations in O2transport and utilization and exercise tolerance after blood donation. Twenty-two healthy volunteers performed moderate-intensity and ramp incremental cycle exercise tests prior to and following withdrawal of ∼450 ml of whole blood. Before donation, all subjects consumed seven 70-ml shots of NO3−-depleted BR [placebo (PL)] in the 48 h preceding the exercise tests. During the 48 h after blood donation, subjects consumed seven shots of BR (each containing 6.2 mmol of NO3−, n = 11) or PL ( n = 11) before repeating the exercise tests. Hemoglobin concentration and hematocrit were reduced by ∼8–9% following blood donation ( P < 0.05), with no difference between the BR and PL groups. Steady-state O2uptake during moderate-intensity exercise was ∼4% lower after than before donation in the BR group ( P < 0.05) but was unchanged in the PL group. The ramp test peak power decreased from predonation (341 ± 70 and 331 ± 68 W in PL and BR, respectively) to postdonation (324 ± 69 and 322 ± 66 W in PL and BR, respectively) in both groups ( P < 0.05). However, the decrement in performance was significantly less in the BR than PL group (2.7% vs. 5.0%, P < 0.05). NO3−supplementation reduced the O2cost of moderate-intensity exercise and attenuated the decline in ramp incremental exercise performance following blood donation. These results have implications for improving functional capacity following blood loss.


2013 ◽  
Vol 305 (12) ◽  
pp. R1441-R1450 ◽  
Author(s):  
Brynmor C. Breese ◽  
Melitta A. McNarry ◽  
Simon Marwood ◽  
Jamie R. Blackwell ◽  
Stephen J. Bailey ◽  
...  

Recent research has suggested that dietary nitrate (NO3−) supplementation might alter the physiological responses to exercise via specific effects on type II muscle. Severe-intensity exercise initiated from an elevated metabolic rate would be expected to enhance the proportional activation of higher-order (type II) muscle fibers. The purpose of this study was, therefore, to test the hypothesis that, compared with placebo (PL), NO3−-rich beetroot juice (BR) supplementation would speed the phase II V̇o2kinetics (τp) and enhance exercise tolerance during severe-intensity exercise initiated from a baseline of moderate-intensity exercise. Nine healthy, physically active subjects were assigned in a randomized, double-blind, crossover design to receive BR (140 ml/day, containing ∼8 mmol of NO3−) and PL (140 ml/day, containing ∼0.003 mmol of NO3−) for 6 days. On days 4, 5, and 6 of the supplementation periods, subjects completed a double-step exercise protocol that included transitions from unloaded to moderate-intensity exercise (U→M) followed immediately by moderate to severe-intensity exercise (M→S). Compared with PL, BR elevated resting plasma nitrite concentration (PL: 65 ± 32 vs. BR: 348 ± 170 nM, P < 0.01) and reduced the V̇o2τpin M→S (PL: 46 ± 13 vs. BR: 36 ± 10 s, P < 0.05) but not U→M (PL: 25 ± 4 vs. BR: 27 ± 6 s, P > 0.05). During M→S exercise, the faster V̇o2kinetics coincided with faster near-infrared spectroscopy-derived muscle [deoxyhemoglobin] kinetics (τ; PL: 20 ± 9 vs. BR: 10 ± 3 s, P < 0.05) and a 22% greater time-to-task failure (PL: 521 ± 158 vs. BR: 635 ± 258 s, P < 0.05). Dietary supplementation with NO3−-rich BR juice speeds V̇o2kinetics and enhances exercise tolerance during severe-intensity exercise when initiated from an elevated metabolic rate.


2013 ◽  
Vol 115 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Lee J. Wylie ◽  
James Kelly ◽  
Stephen J. Bailey ◽  
Jamie R. Blackwell ◽  
Philip F. Skiba ◽  
...  

Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO3−), increases plasma nitrite concentration ([NO2−]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3−, respectively) or no supplement to establish the effects of BR on resting plasma [NO3−] and [NO2−] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3−-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2−] increased in a dose-dependent manner, with the peak changes occurring at approximately 2–3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% ( P = 0.06) and 3.0% ( P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2−] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3−-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3−. These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.


2010 ◽  
Vol 109 (5) ◽  
pp. 1394-1403 ◽  
Author(s):  
Stephen J. Bailey ◽  
Paul G. Winyard ◽  
Anni Vanhatalo ◽  
Jamie R. Blackwell ◽  
Fred J. DiMenna ◽  
...  

It has recently been reported that dietary nitrate (NO3−) supplementation, which increases plasma nitrite (NO2−) concentration, a biomarker of nitric oxide (NO) availability, improves exercise efficiency and exercise tolerance in healthy humans. We hypothesized that dietary supplementation with l-arginine, the substrate for NO synthase (NOS), would elicit similar responses. In a double-blind, crossover study, nine healthy men (aged 19–38 yr) consumed 500 ml of a beverage containing 6 g of l-arginine (Arg) or a placebo beverage (PL) and completed a series of “step” moderate- and severe-intensity exercise bouts 1 h after ingestion of the beverage. Plasma NO2− concentration was significantly greater in the Arg than the PL group (331 ± 198 vs. 159 ± 102 nM, P < 0.05) and systolic blood pressure was significantly reduced (123 ± 3 vs. 131 ± 5 mmHg, P < 0.01). The steady-state O2 uptake (V̇o2) during moderate-intensity exercise was reduced by 7% in the Arg group (1.48 ± 0.12 vs. 1.59 ± 0.14 l/min, P < 0.05). During severe-intensity exercise, the V̇o2 slow component amplitude was reduced (0.58 ± 0.23 and 0.76 ± 0.29 l/min in Arg and PL, respectively, P < 0.05) and the time to exhaustion was extended (707 ± 232 and 562 ± 145 s in Arg and PL, respectively, P < 0.05) following consumption of Arg. In conclusion, similar to the effects of increased dietary NO3− intake, elevating NO bioavailability through dietary l-Arg supplementation reduced the O2 cost of moderate-intensity exercise and blunted the V̇o2 slow component and extended the time to exhaustion during severe-intensity exercise.


2018 ◽  
Vol 124 (5) ◽  
pp. 1254-1263 ◽  
Author(s):  
Rachel Tan ◽  
Lee J. Wylie ◽  
Christopher Thompson ◽  
Jamie R. Blackwell ◽  
Stephen J. Bailey ◽  
...  

Nitrate-rich beetroot juice (BR) supplementation has been shown to increase biomarkers of nitric oxide availability with implications for the physiological responses to exercise. We hypothesized that BR supplementation before and during prolonged moderate-intensity exercise would maintain an elevated plasma nitrite concentration ([[Formula: see text]]), attenuate the expected progressive increase in V̇o2 over time, and improve performance in a subsequent time trial (TT). In a double-blind, randomized, crossover design, 12 men completed 2 h of moderate-intensity cycle exercise followed by a 100-kJ TT in three conditions: 1) BR before and 1 h into exercise (BR + BR); 2) BR before and placebo (PL) 1 h into exercise (BR + PL); and 3) PL before and 1 h into exercise (PL + PL). During the 2-h moderate-intensity exercise bout, plasma [[Formula: see text]] declined by ~17% in BR + PL but increased by ~8% in BR + BR such that, at 2 h, plasma [[Formula: see text]] was greater in BR + BR than both BR + PL and PL + PL ( P < 0.05). V̇o2 was not different among conditions over the first 90 min of exercise but was lower at 120 min in BR + BR (1.73 ± 0.24 l/min) compared with BR + PL (1.80 ± 0.21 l/min; P = 0.08) and PL + PL (1.83 ± 0.27 l/min; P < 0.01). The decline in muscle glycogen concentration over the 2-h exercise bout was attenuated in BR + BR (~28% decline) compared with BR + PL (~44% decline) and PL + PL (~44% decline; n = 9, P < 0.05). TT performance was not different among conditions ( P > 0.05). BR supplementation before and during prolonged moderate-intensity exercise attenuated the progressive rise in V̇o2 over time and appeared to reduce muscle glycogen depletion but did not enhance subsequent TT performance. NEW & NOTEWORTHY We show for the first time that ingestion of nitrate during exercise preserves elevated plasma [nitrite] and negates the progressive rise in O2 uptake during prolonged moderate-intensity exercise.


Author(s):  
Daniel G. Sadler ◽  
Richard Draijer ◽  
Claire E. Stewart ◽  
Helen Jones ◽  
Simon Marwood ◽  
...  

Abstract Introduction Cocoa flavanols (CF) may exert health benefits through their potent vasodilatory effects, which are perpetuated by elevations in nitric oxide (NO) bioavailability. These vasodilatory effects may contribute to improved delivery of blood and oxygen (O2) to exercising muscle. Purpose Therefore, the objective of this study was to examine how CF supplementation impacts pulmonary O2 uptake ($$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 ) kinetics and exercise tolerance in sedentary middle-aged adults. Methods We employed a double-blind cross-over, placebo-controlled design whereby 17 participants (11 male, 6 female; mean ± SD, 45 ± 6 years) randomly received either 7 days of daily CF (400 mg) or placebo (PL) supplementation. On day 7, participants completed a series of ‘step’ moderate- and severe-intensity exercise tests for the determination of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 kinetics. Results During moderate-intensity exercise, the time constant of the phase II $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 kinetics ($$\tau \dot{V}{\text{O}}_{2}$$ τ V ˙ O 2 ) was decreased by 15% in CF as compared to PL (mean ± SD; PL 40 ± 12 s vs. CF 34 ± 9 s, P = 0.019), with no differences in the amplitude of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 (A$$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 ; PL 0.77 ± 0.32 l min−1 vs. CF 0.79 ± 0.34 l min−1, P = 0.263). However, during severe-intensity exercise, $$\tau \dot{V}{\text{O}}_{2}$$ τ V ˙ O 2 , the amplitude of the slow component ($${\text{SC}}\dot{V}{\text{O}}_{2}$$ SC V ˙ O 2 ) and exercise tolerance (PL 435 ± 58 s vs. CF 424 ± 47 s, P = 0.480) were unchanged between conditions. Conclusion Our data show that acute CF supplementation enhanced $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 kinetics during moderate-, but not severe-intensity exercise in middle-aged participants. These novel effects of CFs, in this demographic, may contribute to improved tolerance of moderate-activity physical activities, which appear commonly present in daily life. Trial registration Registered under ClinicalTrials.gov Identifier no. NCT04370353, 30/04/20 retrospectively registered


2017 ◽  
Vol 12 (5) ◽  
pp. 684-689 ◽  
Author(s):  
Joseph A. McQuillan ◽  
Deborah K. Dulson ◽  
Paul B. Laursen ◽  
Andrew E. Kilding

Purpose:To determine the effect of dietary nitrate (NO3 –) supplementation on physiology and performance in well-trained cyclists after 6–8 d of NO3 – supplementation.Methods:Eight competitive male cyclists (mean ± SD age 26 ± 8 y, body mass 76.7 ± 6.9 kg, VO2peak 63 ± 4 mL · kg–1 · min–1) participated in a double-blind, placebo-controlled, crossover-design study in which participants ingested 70 mL of beetroot juice containing ~4 mmol NO3 – (NIT) or a NO3 –-depleted placebo (PLA), each for 8 d. Replicating pretreatment measures, participants undertook an incremental ramp assessment to determine VO2peak and first (VT1) and second (VT2) ventilatory thresholds on d 6 (NIT6 and PLA6), moderate-intensity cycling economy on d 7 (NIT7 and PLA7), and a 4-km time trial (TT) on d 8 (NIT8 and PLA8).Results:Relative to PLA, 6 d of NIT supplementation produced unclear effects for VO2peak (mean ± 95% confidence limit: 1.8% ± 5.5%) and VT1 (3.7% ± 12.3%) and trivial effects for both VT2 (–1.0% ± 3.0%) and exercise economy on d 7 (–1.0% ± 1.6%). However, effects for TT performance time (–0.7% ± 0.9%) and power (2.4% ± 2.5%) on d 8 were likely beneficial.Conclusions:Despite mostly unclear outcomes for standard physiological determinants of performance, 8 d of NO3 – supplementation resulted in likely beneficial improvements to 4-km TT performance in well-trained male endurance cyclists.


2016 ◽  
Vol 41 (4) ◽  
pp. 421-429 ◽  
Author(s):  
Joelle Leonie Flueck ◽  
Anna Bogdanova ◽  
Samuel Mettler ◽  
Claudio Perret

Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3−; NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min−1·kg−1 [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ∼4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.


2017 ◽  
Vol 122 (3) ◽  
pp. 642-652 ◽  
Author(s):  
Christopher Thompson ◽  
Lee J. Wylie ◽  
Jamie R. Blackwell ◽  
Jonathan Fulford ◽  
Matthew I. Black ◽  
...  

We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR ( P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL ( P < 0.05) or NT+BR ( P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR ( P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL ( P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only ( P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Phillip M Armentrout ◽  
James M Smoliga ◽  
Kennedy Marshall ◽  
Colin R Carriker

Introduction: Previous studies have examined dietary nitrate's and caffeine’s combined effects on time-trial and peak power output with caffeine improving performance while nitrate exhibits no additive benefit with co-ingestion. However, less is known about their combined effect on submaximal intensity exercise. Dietary nitrate may reduce submaximal oxygen cost while caffeine may increase submaximal cost. Hypothesis: Co-ingestion of dietary nitrate may attenuate the rise in oxygen consumption following caffeine intake. Methods: Ten healthy individuals (4 males; 28 ± 10 years of age) and (6 females; 21 ± 3 years of age) participated in a double-blind, placebo controlled, crossover experiment. The first of five visits consisted of a maximal oxygen consumption (VO 2max ) treadmill test. Prior to visits 2 - 5, participants consumed either a dietary nitrate (~12.4 mmol, NIT) or placebo nitrate supplement (PLN) combined with either a caffeine (3 mg/kg, CAF) or placebo caffeine (PLC) dose for a total of 4 days. The final dose of NIT or PLN and CAF or PLC was consumed 2.5 and 1-hr pre-exercise, respectively. Visits 2 - 5 consisted of a 30-min treadmill run at ~65% VO 2max . During exercise, VO 2 and heart rate (HR) were measured continuously. A linear mixed effects model analysis was performed to determine how each supplementation influenced each dependent variable. Treatments (NIT+CAF, CAF+PLN, NIT+PLC, PLN+PLC) and exercise timepoints (10 and 30 min) served as fixed factors. If p<0.05, p ost-hoc pairwise comparisons were performed. Results: Exercise VO 2 was significantly elevated for NIT+CAF at 10 and 30 minutes (36.2±4.1 and 37.7±5.0 ml/kg/min, respectively) compared to placebo (33.4±3.4 and 35.3±3.8 ml/kg/min, respectively) (p<0.05). However, there was no difference in VO2 at either timepoint (10 or 30 minutes) for conditions CAF+PLN (34.3±3.9, 35.4±3.6, and 36.3±3.2 ml/kg/min, respectively) (p=0.07) and NIT+PLC (34.8±3.9, 36.0±4.2, and 36.6±4.4 ml/kg/min, respectively) (p=0.08) compared to PLN+PLC. No difference was observed for heart rate between conditions at any timepoint. However, oxygen-pulse (VO 2 /HR) at the end of exercise was elevated in NIT+CAF (15.1±2.5 ml/beat) compared to CAF+PLN, NIT+PLC, PLN+PLC (14.5±2.5, 14.2±2.5, 13.8±2.5 ml/beat, respectively). Conclusion: When consumed independently, a low-moderate dose of caffeine or dietary nitrate had no impact on oxygen consumption during 30 minutes of moderate intensity exercise. However, co-ingestion of dietary nitrate and caffeine elevated submaximal oxygen consumption compared to a placebo control; both overall (main effect) and at individual time points of 10 and 30 minutes. Additionally, oxygen-pulse was elevated with co-ingestion compared to all treatments perhaps due to enhanced tissue uptake or altered mitochondrial efficiency. Future work may examine such mechanisms.


Sign in / Sign up

Export Citation Format

Share Document