TRPV4 channel blockade does not modulate skin vasodilation and sweating during hyperthermia or cutaneous post-occlusive reactive and thermal hyperemia

Author(s):  
Naoto Fujii ◽  
Glen P. Kenny ◽  
Gregory W. McGarr ◽  
Tatsuro Amano ◽  
Yasushi Honda ◽  
...  

Transient receptor potential vanilloid 4 (TRPV4) channels exist on vascular endothelial cells and eccrine sweat gland secretory cells in human skin. Here, we assessed if TRPV4 channels contribute to cutaneous vasodilation and sweating during whole-body passive heat stress (protocol 1) and to cutaneous vasodilation during post-occlusive reactive hyperemia and local thermal hyperemia (protocol 2). Intradermal microdialysis was employed to locally deliver pharmacological agents to forearm skin sites where cutaneous vascular conductance (CVC) and sweat rate were assessed. In protocol 1 (twelve young adults), CVC and sweat rate were increased by passive whole-body heating resulting in a body core temperature elevation of 1.2±0.1ºC. The elevated CVC and sweat rate assessed at sites treated with TRPV4 channel antagonist (either 200 µM HC-067047 or 125 µM GSK2193874) were not different from the vehicle control site (5 % dimethyl sulfoxide). After whole-body heating, a TRPV4 channel agonist (100 µM GSK1016790A) was administered to each skin site, eliciting elevations in CVC. Relative to control, this response was partly attenuated by both TRPV4 channel antagonists, confirming drug efficacy. In protocol 2 (ten young adults), CVC was increased following a 5-min arterial occlusion and during local heating from 33 to 42ºC. These responses did not differ between the control and the TRPV4 channel antagonist sites (200 µM HC-067047). We show that TRPV4 channels are not required for regulating cutaneous vasodilation or sweating during a whole-body passive heat stress. Further, they are not required for regulating cutaneous vasodilation during post-occlusive reactive hyperemia and local thermal hyperemia.

2015 ◽  
Vol 309 (1) ◽  
pp. R36-R42 ◽  
Author(s):  
Nicole E. Moyen ◽  
Hannah M. Anderson ◽  
Jenna M. Burchfield ◽  
Matthew A. Tucker ◽  
Melina A. Gonzalez ◽  
...  

The purpose of this study was to compare smokers and nonsmokers' sudomotor and cutaneous vascular responses to whole body passive heat stress. Nine regularly smoking (SMK: 29 ± 9 yr; 10 ± 6 cigarettes/day) and 13 nonsmoking (N-SMK: 27 ± 8 yr) males were passively heated until core temperature (TC) increased 1.5°C from baseline. Forearm local sweat rate (LSR) via ventilated capsule, sweat gland activation (SGA), sweat gland output (SGO), and cutaneous vasomotor activity via laser-Doppler flowmetry (CVC) were measured as mean body temperature increased (ΔTb) during passive heating using a water-perfused suit. Compared with N-SMK, SMK had a smaller ΔTb at the onset of sweating (0.52 ± 0.19 vs. 0.35 ± 0.14°C, respectively; P = 0.03) and cutaneous vasodilation (0.61 ± 0.21 vs. 0.31 ± 0.12°C, respectively; P < 0.01). Increases in LSR and CVC per °C ΔTb (i.e., sensitivity) were similar in N-SMK and SMK (LSR: 0.63 ± 0.21 vs. 0.60 ± 0.40 Δmg/cm2/min/°C ΔTb, respectively, P = 0.81; CVC: 82.5 ± 46.2 vs. 58.9 ± 23.3 Δ%max/°C ΔTb, respectively; P = 0.19). However, the plateau in LSR during whole body heating was higher in N-SMK vs. SMK (1.00 ± 0.13 vs. 0.79 ± 0.26 mg·cm−2·min−1; P = 0.03), which was likely a result of higher SGO (8.94 ± 3.99 vs. 5.94 ± 3.49 μg·gland−1·min−1, respectively; P = 0.08) and not number of SGA (104 ± 7 vs. 121 ± 9 glands/cm2, respectively; P = 0.58). During whole body passive heat stress, smokers had an earlier onset for forearm sweating and cutaneous vasodilation, but a lower local sweat rate that was likely due to lower sweat output per gland. These data provide insight into local (i.e., forearm) thermoregulatory responses of young smokers during uncompensatory whole body passive heat stress.


2019 ◽  
Vol 126 (4) ◽  
pp. 1129-1137 ◽  
Author(s):  
Robert D. Meade ◽  
Naoto Fujii ◽  
Gregory W. McGarr ◽  
Lacy M. Alexander ◽  
Pierre Boulay ◽  
...  

Age-related impairments in cutaneous vascular conductance (CVC) and sweat rate (SR) during exercise may result from increased arginase activity, which can attenuate endogenous nitric oxide (NO) production. We therefore evaluated whether arginase inhibition modulates these heat-loss responses in young ( n = 9, 23 ± 3 yr) and older ( n = 9, 66 ± 6 yr) men during two 30-min bouts of moderate-intensity cycling (Ex1 and Ex2) in the heat (35°C). CVC and SR were measured at forearm skin sites perfused with 1) lactated Ringer’s (control), 2) NG-nitro-L-arginine methyl ester (L-NAME; NO synthase-inhibited), or 3) Nω-hydroxy-nor-arginine and S-(2-boronoethyl)-l-cysteine (Nor-NOHA + BEC; arginase-inhibited). In both groups, CVC was reduced at L-NAME relative to control and Nor-NOHA + BEC (both P < 0.01). Likewise, SR was attenuated with L-NAME compared with control and Nor-NOHA + BEC during each exercise bout in the young men (all P ≤ 0.05); however, no influence of treatment on SR in the older men was observed ( P = 0.14). Based on these findings, we then evaluated responses in 7 older men (64 ± 7 yr) during passively induced elevations in esophageal temperature (∆Tes) equal to those in Ex1 (0.6°C) and Ex2 (0.8°C). L-NAME reduced CVC by 18 ± 20% CVCmax at a ∆Tes of 0.8°C ( P = 0.03) compared with control, whereas Nor-NOHA + BEC augmented CVC by 20 ± 18% CVCmax, on average, throughout heating (both P ≤ 0.03). SR was not influenced by either treatment ( P = 0.80) Thus, arginase inhibition does not modulate CVC or SR during exercise in the heat but, consistent with previous findings, does augment CVC in older men during passive heating. NEW & NOTEWORTHY In the current study, we demonstrate that local arginase inhibition does not influence forearm cutaneous vasodilatory and sweating responses in young or older men during exercise-heat stress. Consistent with previous findings, however, we observed augmented cutaneous blood flow with arginase inhibition during whole-body passive heat stress. Thus, arginase differentially affects cutaneous vasodilation depending on the mode of heat stress but does not influence sweating during exercise or passive heating.


2015 ◽  
Vol 309 (5) ◽  
pp. R623-R627 ◽  
Author(s):  
Jonathan E. Wingo ◽  
David A. Low ◽  
David M. Keller ◽  
Kenichi Kimura ◽  
Craig G. Crandall

The influence of thermoreceptors in human facial skin on thermoeffector responses is equivocal; furthermore, the presence of thermoreceptors in the respiratory tract and their involvement in thermal homeostasis has not been elucidated. This study tested the hypothesis that hot air directed on the face and inhaled during whole body passive heat stress elicits an earlier onset and greater sensitivity of cutaneous vasodilation and sweating than that directed on an equal skin surface area away from the face. Six men and two women completed two trials separated by ∼1 wk. Participants were passively heated (water-perfused suit; core temperature increase ∼0.9°C) while hot air was directed on either the face or on the lower leg (counterbalanced). Skin blood flux (laser-Doppler flowmetry) and local sweat rate (capacitance hygrometry) were measured at the chest and one forearm. During hot-air heating, local temperatures of the cheek and leg were 38.4 ± 0.8°C and 38.8 ± 0.6°C, respectively ( P = 0.18). Breathing hot air combined with facial heating did not affect mean body temperature onsets ( P = 0.97 and 0.27 for arm and chest sites, respectively) or slopes of cutaneous vasodilation ( P = 0.49 and 0.43 for arm and chest sites, respectively), or the onsets ( P = 0.89 and 0.94 for arm and chest sites, respectively), or slopes of sweating ( P = 0.48 and 0.65 for arm and chest sites, respectively). Based on these findings, respiratory tract thermoreceptors, if present in humans, and selective facial skin heating do not modulate thermoeffector responses during passive heat stress.


2017 ◽  
Vol 118 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Dustin R. Allen ◽  
Mu Huang ◽  
Iqra M. Parupia ◽  
Ariana R. Dubelko ◽  
Elliot M. Frohman ◽  
...  

Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS), disrupting autonomic function. The aim of this study was to test the hypothesis that individuals with MS have blunted control of thermoregulatory reflex increases in sweat rate (SR) and cutaneous vasodilation compared with controls during a passive whole body heat stress (WBH). Eighteen individuals with relapsing-remitting MS and 18 healthy controls (Con) participated in the study. Core temperature (Tcore), skin temperature, heart rate, arterial blood pressure (10-min intervals), skin blood flow (laser-Doppler flux, LDF), and SR were continuously measured during normothermic baseline (34°C water perfusing a tube-lined suit) and WBH (increased Tcore 0.8°C via 48°C water perfusing the suit). Following WBH, local heaters were warmed to 42°C, inducing peak cutaneous vasodilation at the site of LDF collection. Cutaneous vascular conductance (CVC) was calculated as the ratio of LDF to mean arterial pressure and expressed as a percentage of peak achieved during local heating. Individuals with MS had attenuated SR responses to WBH (ΔSR from baseline: Con, 0.65 ± 0.27; MS, 0.42 ± 0.17 mg·cm−2·min−1, P = 0.003), whereas Δ%CVC42C from baseline was similar between groups (Con, 42 ± 16%; MS, 38 ± 12%, P = 0.39). SR responses were blunted as a function of Tcore in MS (interaction: group × Tcore, P = 0.03), of which differences were evident at ΔTcore 0.7°C and 0.8°C ( P < 0.05). No interaction was observed in Δ%CVC42C. Taken together, the findings show MS blunts sweating responses, whereas control of the cutaneous vasculature is preserved, in response to WBH. NEW & NOTEWORTHY This study is the first to assess the reflex control of the thermoregulatory system in individuals living with multiple sclerosis (MS). The novel findings are twofold. First, attenuated increases in sweat rate in subjects with MS compared with healthy controls were observed in response to a moderate increase (0.8°C) in core temperature via passive whole body heat stress. Second, it appears the reflex control of the cutaneous vasculature is preserved in MS.


2009 ◽  
Vol 107 (5) ◽  
pp. 1438-1444 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu

Nitric oxide (NO) participates in the cutaneous vasodilation caused by increased local skin temperature (Tloc) and whole body heat stress in humans. In forearm skin, endothelial NO synthase (eNOS) participates in vasodilation due to elevated Tloc and neuronal NO synthase (nNOS) participates in vasodilation due to heat stress. To explore the relative roles and interactions of these isoforms, we examined the effects of a relatively specific eNOS inhibitor, Nω-amino-l-arginine (LNAA), and a specific nNOS inhibitor, Nω-propyl-l-arginine (NPLA), both separately and in combination, on skin blood flow (SkBF) responses to increased Tloc and heat stress in two protocols. In each protocol, SkBF was monitored by laser-Doppler flowmetry (LDF) and mean arterial pressure (MAP) by Finapres. Cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Intradermal microdialysis was used to treat one site with 5 mM LNAA, another with 5 mM NPLA, a third with combined 5 mM LNAA and 5 mM NPLA (Mix), and a fourth site with Ringer only. In protocol 1, Tloc was controlled with combined LDF/local heating units. Tloc was increased from 34°C to 41.5°C to cause local vasodilation. In protocol 2, after a period of normothermia, whole body heat stress was induced (water-perfused suits). At the end of each protocol, all sites were perfused with 58 mM nitroprusside to effect maximal vasodilation for data normalization. In protocol 1, at Tloc = 34°C, CVC did not differ between sites ( P > 0.05). LNAA and Mix attenuated CVC increases at Tloc = 41.5°C to similar extents ( P < 0.05, LNAA or Mix vs. untreated or NPLA). In protocol 2, in normothermia, CVC did not differ between sites ( P > 0.05). During heat stress, NPLA and Mix attenuated CVC increases to similar extents, but no significant attenuation occurred with LNAA ( P < 0.05, NPLA or Mix vs. untreated or LNAA). In forearm skin, eNOS mediates the vasodilator response to increased Tloc and nNOS mediates the vasodilator response to heat stress. The two isoforms do not appear to interact during either response.


2012 ◽  
Vol 112 (12) ◽  
pp. 2037-2042 ◽  
Author(s):  
Brett J. Wong ◽  
Sarah M. Fieger

Mechanisms underlying the cutaneous vasodilation in response to an increase in core temperature remain unresolved. The purpose of this study was to determine a potential contribution of transient receptor potential vanilloid type 1 (TRPV-1) channels to reflex cutaneous vasodilation. Twelve subjects were equipped with four microdialysis fibers on the ventral forearm, and each site randomly received 1) 90% propylene glycol + 10% lactated Ringer (vehicle control); 2) 10 mM l-NAME; 3) 20 mM capsazepine to inhibit TRPV-1 channels; 4) combined 10 mM l-NAME + 20 mM capsazepine. Whole body heating was achieved via water-perfused suits sufficient to raise oral temperature at least 0.8°C above baseline. Maximal skin blood flow was achieved by local heating to 43°C and infusion of 28 mM nitroprusside. Systemic arterial pressure (SAP) was measured, and skin blood flow was monitored via laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as LDF/SAP and normalized to maximal vasodilation (%CVCmax). Capsazepine sites were significantly reduced compared with control (50 ± 4%CVCmax vs. 67 ± 5%CVCmax, respectively; P < 0.05). l-NAME (33 ± 3%CVCmax) and l-NAME + capsazepine (30 ± 4%CVCmax) sites were attenuated compared with control ( P < 0.01) and capsazepine ( P < 0.05); however, there was no difference between l-NAME and combined l-NAME + capsazepine. These data suggest TRPV-1 channels participate in reflex cutaneous vasodilation and TRPV-1 channels may account for a portion of the NO component. TRPV-1 channels may have a direct neural contribution or have an indirect effect via increased arterial blood temperature. Whether the TRPV-1 channels directly or indirectly contribute to reflex cutaneous vasodilation remains uncertain.


2013 ◽  
Vol 304 (8) ◽  
pp. R651-R656 ◽  
Author(s):  
Brett J. Wong

We tested the hypothesis that inhibition of cutaneous sensory nerves would attenuate reflex cutaneous vasodilation in response to an increase in core temperature. Nine subjects were equipped with four microdialysis fibers on the forearm. Two sites were treated with topical anesthetic EMLA cream for 120 min. Sensory nerve inhibition was verified by lack of sensation to a pinprick. Microdialysis fibers were randomly assigned as 1) lactated Ringer (control); 2) 10 mM nitro-l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase; 3) EMLA + lactated Ringer; and 4) EMLA + l-NAME. Laser-Doppler flowmetry was used as an index of skin blood flow, and blood pressure was measured via brachial auscultation. Subjects wore a water-perfused suit, and oral temperature was monitored as an index of core temperature. The suit was perfused with 50°C water to initiate whole body heat stress to raise oral temperature 0.8°C above baseline. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVCmax). There was no difference in CVC between control and EMLA sites (67 ± 5 vs. 69 ± 6% CVCmax), but the onset of vasodilation was delayed at EMLA compared with control sites. The l-NAME site was significantly attenuated compared with control and EMLA sites (45 ± 5% CVCmax; P < 0.01). Combined EMLA + l-NAME site (25 ± 6% CVCmax) was attenuated compared with control and EMLA ( P < 0.001) and l-NAME only ( P < 0.01). These data suggest cutaneous sensory nerves contribute to reflex cutaneous vasodilation during the early, but not latter, stages of heat stress, and full expression of reflex cutaneous vasodilation requires functional sensory nerves and NOS.


1982 ◽  
Vol 53 (3) ◽  
pp. 671-676 ◽  
Author(s):  
B. L. Drinkwater ◽  
J. F. Bedi ◽  
A. B. Loucks ◽  
S. Roche ◽  
S. M. Horvath

Ten postmenopausal and ten younger women rested for 2 h in a 40 degrees C, 22.2-Torr vapor pressure environment. Sweating response was monitored by resistance hygrometry for onset, a platform balance for whole-body sweat rate, and five individual capsules for regional sweat rate. Other variables measured included forearm blood flow, heart rate (HR), mean skin (Tsk) and rectal (Tre) temperatures, sweat electrolytes (Na+ and K+), oxygen uptake, and plasma volume changes. Preliminary tests included maximal aerobic power (VO2max) and percent body fat. Heat stress did not elicit any significant differences in sweating response between age groups. Indices of heat strain, Tre and HR, were also similar for both groups. The only significant difference between younger and older women was a higher Na+ concentration in the forearm sweat of postmenopausal women. No thermoregulatory responses were related to age, but both sweat rate (r = 0.48) and peak Tsk (r = -0.43) were related to VO2max. For healthy, active, older women aging did not diminish the functional capacity of the sweating mechanism to cope with heat stress while resting in this specific thermal environment.


2005 ◽  
Vol 98 (6) ◽  
pp. 2011-2018 ◽  
Author(s):  
Gregg R. McCord ◽  
Christopher T. Minson

The dramatic increase in skin blood flow and sweating observed during heat stress is mediated by poorly understood sympathetic cholinergic mechanisms. One theory suggests that a single sympathetic cholinergic nerve mediates cutaneous active vasodilation (AVD) and sweating via cotransmission of separate neurotransmitters, because AVD and sweating track temporally and directionally when activated during passive whole body heat stress. It has also been suggested that these responses are regulated independently, because cutaneous vascular conductance (CVC) has been shown to decrease, whereas sweat rate increases, during combined hyperthermia and isometric handgrip exercise. We tested the hypothesis that CVC decreases during isometric handgrip exercise if skin blood flow is elevated using local heating to levels similar to that induced by pronounced hyperthermia but that this does not occur at lower levels of skin blood flow. Subjects performed isometric handgrip exercise as CVC was elevated at selected sites to varying levels by local heating (which is independent of AVD) in thermoneutral and hyperthermic conditions. During thermoneutral isometric handgrip exercise, CVC decreased at sites in which blood flow was significantly elevated before exercise (−6.5 ± 1.8% of maximal CVC at 41°C and −10.5 ± 2.0% of maximal CVC at 43°C; P < 0.05 vs. preexercise). During isometric handgrip exercise in the hyperthermic condition, an observed decrease in CVC was associated with the level of CVC before exercise. Taken together, these findings argue against withdrawal of AVD to explain the decrease in CVC observed during isometric handgrip exercise in hyperthermic conditions.


2011 ◽  
Vol 110 (5) ◽  
pp. 1406-1413 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu ◽  
John M. Johnson

We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVCmax); DMSO, 14 ± 3% CVCmax; Ringer, 17 ± 6% CVCmax; P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVCmax; DMSO, 64 ± 4% CVCmax; Ringer, 63 ± 4% CVCmax; P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVCmax; DMSO, 18 ± 4% CVCmax; Ringer, 18 ± 3% CVCmax; P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVCmax; DMSO, 86 ± 4% CVCmax; Ringer, 90 ± 2% CVCmax; P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.


Sign in / Sign up

Export Citation Format

Share Document