Differential role of the paraventricular nucleus of the hypothalamus in modulating the sympathoexcitatory component of peripheral and central chemoreflexes

2005 ◽  
Vol 289 (3) ◽  
pp. R789-R797 ◽  
Author(s):  
Maram K. Reddy ◽  
Kaushik P. Patel ◽  
Harold D. Schultz

In the present study we investigated the involvement of the hypothalamic paraventricular nucleus (PVN) in the modulation of sympathoexcitatory reflex activated by peripheral and central chemoreceptors. We measured mean arterial blood pressure (MAP), heart rate (HR), renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) before and after blocking neurotransmission within the PVN by bilateral microinjection of 2% lidocaine (100 nl) during specific stimulation of peripheral chemoreceptors by potassium cyanide (KCN, 75 μg/kg iv, bolus dose) or stimulation of central chemoreceptors with hypercapnia (10% CO2). Typically stimulation of peripheral chemoreceptors evoked a reflex response characterized by an increase in MAP, RSNA, and PNA and a decrease in HR. Bilateral microinjection of 2% lidocaine into the PVN had no effect on basal sympathetic and cardiorespiratory variables; however, the RSNA and PNA responses evoked by peripheral chemoreceptor stimulation were attenuated ( P < 0.05). Bilateral microinjection of bicuculline (50 pmol/50 nl, n = 5) into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation ( P < 0.05). Conversely, the GABA agonist muscimol (0.2 nmol/50 nl, n = 5) injected into the PVN attenuated these reflex responses ( P < 0.05). Blocking neurotransmission within the PVN had no effect on the hypercapnia-induced central chemoreflex responses in carotid body denervated animals. These results suggest a selective role of the PVN in processing the sympathoexcitatory and ventilatory component of the peripheral, but not central, chemoreflex.

1982 ◽  
Vol 243 (5) ◽  
pp. R537-R545 ◽  
Author(s):  
D. R. Jones ◽  
W. K. Milsom ◽  
G. R. Gabbott

Using techniques of vascular isolation and subsequent perfusion we have investigated the effects of altering blood gas tensions, in the cerebral and carotid body circulations, on some cardiovascular responses to diving in unanesthetized ducks. After denervating the right carotid body, perfusion of the innervated left carotid body with hyperoxic blood significantly reduced diving bradycardia and reduced the increase in hindlimb vascular resistance (HLVR) in 1-min dives compared with dives in which the innervated carotid body was autoperfused. Denervation of systemic arterial baroreceptors reduced the fall in heart rate (HR) and increased the rise in HLVR in all dives. Cross-perfusion of the head, from a donor with blood of normal blood gas tensions, did not significantly affect HR or HLVR in 2-min dives compared with dives in which the head was autoperfused. however, cross-perfusing the cerebral circulation with blood of elevated PaCO2 caused significantly greater increases in HLVR than when high PaCO2 only affected the peripheral circulation. We conclude that peripheral chemoreceptors cause virtually all the bradycardia in the later stages of a dive but only about one-half the increase in HLVR, a significant contribution comes from the stimulation of central chemoreceptors with blood of high PaCO2.


2009 ◽  
Vol 364 (1529) ◽  
pp. 2501-2516 ◽  
Author(s):  
Sarah C. Nuding ◽  
Lauren S. Segers ◽  
Roger Shannon ◽  
Russell O'Connor ◽  
Kendall F. Morris ◽  
...  

The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not. The network mechanisms through which each class of chemoreceptor differentially influences breathing are poorly understood. Microelectrode arrays were used to monitor sets of spike trains from 114 PRG, 198 VRC and 166 midline neurons in six decerebrate vagotomized cats; 356 were recorded during sequential stimulation of both receptor classes via brief CO 2 -saturated saline injections in vertebral (central) and carotid arteries (peripheral). Seventy neurons responded to both stimuli. More neurons were responsive only to peripheral challenges than those responsive only to central chemoreceptor stimulation (PRG, 20 : 4; VRC, 41 : 10; midline, 25 : 13). Of 16 474 pairs of neurons evaluated for short-time scale correlations, similar percentages of reference neurons in each brain region had correlation features indicative of a specific interaction with at least one target neuron: PRG (59.6%), VRC (51.0%) and raphé nuclei (45.8%). The results suggest a brainstem network architecture with connectivity that shapes the respiratory motor pattern via overlapping circuits that modulate central and peripheral chemoreceptor-mediated influences on breathing.


2007 ◽  
Vol 292 (1) ◽  
pp. H149-H157 ◽  
Author(s):  
Maram K. Reddy ◽  
Harold D. Schultz ◽  
Hong Zheng ◽  
Kaushik P. Patel

Our previous study demonstrated a contribution of the paraventricular nucleus (PVN) of the hypothalamus in the processing of the carotid body (CB) chemoreflex. Nitric oxide (NO) (within the PVN), known to modulate autonomic function, is altered in rats with heart failure (HF). Therefore, the goal of the present study was to examine the influence of endogenous and exogenous NO within the PVN on the sympathoexcitatory component of the peripheral chemoreflex in normal and HF states. We measured mean arterial blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and phrenic nerve activity (PNA) in sham-operated and HF rats (6–8 wk after coronary artery ligation) after incremental doses of potassium cyanide (25–100 μg/kg iv). There was potentiation of the reflex responses in HF compared with sham-operated rats. Bilateral microinjection of an inhibitor of NO synthase, NG-monomethyl-l-arginine (50 pmol), into the PVN augmented the RSNA and PNA response to peripheral chemoreceptor stimulation in sham-operated rats but had no effect in HF rats. Conversely, bilateral microinjection of a NO donor, sodium nitroprusside (50 nmol), into the PVN attenuated the RSNA response of the peripheral chemoreflex in sham-operated rats but to a smaller extent in HF rats. These data indicate that 1) NO within the PVN plays an important role in the processing of the CB chemoreflex and 2) there is an impairment of the NO function within the PVN of HF rats, which contributes to an augmented peripheral chemoreflex and subsequent elevation of sympathetic activity in HF.


2004 ◽  
Vol 96 (1) ◽  
pp. 359-366 ◽  
Author(s):  
Nanduri R. Prabhakar ◽  
Ying-Jie Peng

Peripheral chemoreceptors (carotid and aortic bodies) detect changes in arterial blood oxygen and initiate reflexes that are important for maintaining homeostasis during hypoxemia. This mini-review summarizes the importance of peripheral chemoreceptor reflexes in various physiological and pathophysiological conditions. Carotid bodies are important for eliciting hypoxic ventilatory stimulation in humans and in experimental animals. In the absence of carotid bodies, compensatory upregulation of aortic bodies as well as other chemoreceptors contributes to the hypoxic ventilatory response. Peripheral chemoreceptors are critical for ventilatory acclimatization at high altitude. They also contribute in part to the exercise-induced hyperventilation, especially with submaximal and heavy exercise. During pregnancy, hypoxic ventilatory sensitivity increases, perhaps due to the actions of estrogen and progesterone on chemoreceptors. Augmented peripheral chemoreceptors have been implicated in early stages of recurrent apneas, congestive heart failure, and certain forms of hypertension. It is likely that chemoreceptors tend to maintain oxygen homeostasis and act as a defense mechanism to prevent the progression of the morbidity associated with these diseases. Experimental models of recurrent apneas, congestive heart failure, and hypertension offer excellent opportunities to unravel the cellular mechanisms associated with altered chemoreceptor function.


1987 ◽  
Vol 253 (5) ◽  
pp. H1167-H1176 ◽  
Author(s):  
L. C. Weaver ◽  
S. Genovesi ◽  
A. Stella ◽  
A. Zanchetti

Stimulation of visceral receptors with bradykinin has been shown to cause reflex increases in sympathetic nerve activity and systemic arterial pressure. In this investigation, serosal receptors of the intestine were stimulated by bradykinin in anesthetized cats to 1) compare mesenteric and renal sympathetic responses, 2) compare hemodynamic responses in mesenteric and renal beds, and 3) determine changes in renal function. This stimulation in intact animals caused pressor responses, significantly greater excitation of mesenteric than renal nerves, significantly greater mesenteric than renal vasoconstriction, diuresis, natriuresis, and, in denervated kidneys, increases in fractional sodium excretion. In vagotomized, sinoaortic-denervated cats, stimulation of intestinal receptors caused excitation of mesenteric nerve activity greater than renal for only 30 s. This sympathetic reflex response led to pressor responses, equal mesenteric and renal vasoconstriction, diuresis, natriuresis, and increased fractional excretion of sodium only in denervated kidneys. When abdominal perfusion pressure was held constant with an aortic snare in these same animals, the sympathetic reflexes initially caused greater mesenteric than renal vasoconstriction and antidiuresis and antinatriuresis only in innervated kidneys. These findings demonstrate that the intensity of hemodynamic and renal responses to stimulation of visceral receptors correlates well with the magnitude of sympathetic nerve responses.


2009 ◽  
Vol 296 (4) ◽  
pp. H1058-H1068 ◽  
Author(s):  
Tomoko K. Ichinose ◽  
Donal S. O'Leary ◽  
Tadeusz J. Scislo

The role of nucleus of solitary tract (NTS) A2a adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A2a adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A2a adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A2a receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A2a receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A1 + A2a receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/α-chloralose anesthetized rats. Activation of A2a receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A2a adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.


1964 ◽  
Vol 19 (2) ◽  
pp. 319-321 ◽  
Author(s):  
J. W. Severinghaus ◽  
A. Carceleń B.

CSF pH was shown in a prior report to remain essentially constant during 8 days of acclimatization to 3,800 m. In order to further evaluate the possible role of CSF acid-base equilibria in the regulation of respiration, 20 Peruvian Andean natives were studied at altitudes of 3,720–4,820 m. In ten subjects at 3,720 m, means were: CSF pH 7.327, Pco2 43, HCO3- 21.5, Na+ 136, K+ 2.6, Cl- 124, lactate 30 mg/100 ml. Arterial blood: pH 7.43, Pco2 32.5, HCO3- 21.3, Na+ 136, K+ 4.2, Cl- 107, hematocrit 49, SaOO2 89.6. In six subjects at 4,545 m and four at 4,820 m CSF values were not significantly different; mean arterial Pco2 was 32.6 and 32.3, respectively. The only significant variations with altitude were the expected lowering of PaOO2 to 47 and 43.5 mm Hg, and of SaOO2 to 84.2 and 80.7, and increase of hematocrit to 67% and 75%, respectively. The natives differed from recently acclimatized sea-level residents in showing less ventilation (higher Pco2) in response to the existing hypoxia, and less alkaline arterial blood. The difference appears to relate to peripheral chemoreceptor response to hypoxia rather than central medullary chemoreceptor. respiratory regulation at high altitude; chronic acclimatization to altitude; peripheral chemoreceptor response to hypoxia; CSF and medullary respiratory chemoreceptors Submitted on June 12, 1963


Sign in / Sign up

Export Citation Format

Share Document