scholarly journals Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans

2017 ◽  
Vol 312 (6) ◽  
pp. R956-R964 ◽  
Author(s):  
Rachel C. Drew ◽  
Cheryl A. Blaha ◽  
Michael D. Herr ◽  
Ruda Cui ◽  
Lawrence I. Sinoway

Reflex renal vasoconstriction occurs during exercise, and renal vasoconstriction in response to upper-limb muscle mechanoreflex activation has been documented. However, the renal vasoconstrictor response to muscle mechanoreflex activation originating from lower limbs, with and without local metabolite accumulation, has not been assessed. Eleven healthy young subjects (26 ± 1 yr; 5 men) underwent two trials involving 3-min passive calf muscle stretch (mechanoreflex) during 7.5-min lower-limb circulatory occlusion (CO). In one trial, 1.5-min 70% maximal voluntary contraction isometric calf exercise preceded CO to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex; 70% trial). A control trial involved no exercise before CO (mechanoreflex alone; 0% trial). Beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), mean arterial blood pressure (MAP; photoplethysmographic finger cuff), and heart rate (electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as MAP/RBFV. All baseline cardiovascular variables were similar between trials. Stretch increased RVR and decreased RBFV in both trials (change from CO with stretch: RVR – 0% trial = Δ 10 ± 2%, 70% trial = Δ 7 ± 3%; RBFV – 0% trial = Δ −3.8 ± 1.1 cm/s, 70% trial = Δ −2.7 ± 1.5 cm/s; P < 0.05 for RVR and RBFV). These stretch-induced changes were of similar magnitudes in both trials, e.g., with and without local metabolite accumulation, as well as when thromboxane production was inhibited. These findings suggest that muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction, with and without muscle metaboreflex activation, in healthy humans.

2013 ◽  
Vol 115 (8) ◽  
pp. 1183-1190 ◽  
Author(s):  
Rachel C. Drew ◽  
Matthew D. Muller ◽  
Cheryl A. Blaha ◽  
Jessica L. Mast ◽  
Michael D. Herr ◽  
...  

Muscle mechanoreflex activation decreases the sensitivity of carotid baroreflex (CBR)-heart rate (HR) control during local metabolite accumulation in humans. However, the contribution of thromboxane A2 (TXA2) toward this response is unknown. Therefore, the effect of inhibiting TXA2 production via low-dose aspirin on CBR-HR sensitivity during muscle mechanoreflex and metaboreflex activation in humans was examined. Twelve young subjects performed two trials during two visits, preceded by 7 days' low-dose aspirin (81 mg) or placebo. One trial involved 3-min passive calf stretch (mechanoreflex) during 7.5-min limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex). HR (ECG) and mean arterial pressure (Finometer) were recorded. CBR function was assessed using rapid neck pressures ranging from +40 to −80 mmHg. Aspirin significantly decreased baseline thromboxane B2 production by 84 ± 4% ( P < 0.05) but did not affect 6-keto prostaglandin F1α. Following aspirin, stretch with metabolite accumulation significantly augmented maximal gain (GMAX) and operating point gain (GOP) of CBR-HR (GMAX; −0.71 ± 0.14 vs. −0.37 ± 0.08 and GOP; −0.69 ± 0.13 vs. −0.35 ± 0.12 beats·min-1·mmHg−1 for aspirin and placebo, respectively; P < 0.05). CBR-HR function curves were reset similarly with aspirin and placebo during stretch with metabolite accumulation. In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in humans. This increased sensitivity appears linked to reduced TXA2 production, which likely plays a role in metabolite sensitization of muscle mechanoreceptors.


2015 ◽  
Vol 309 (12) ◽  
pp. R1474-R1478 ◽  
Author(s):  
Christine M. Clark ◽  
Kevin D. Monahan ◽  
Rachel C. Drew

The ability of the human body to maintain arterial blood pressure (BP) during orthostatic stress is determined by several reflex neural mechanisms. Renal vasoconstriction progressively increases during graded elevations in lower body negative pressure (LBNP). This sympathetically mediated response redistributes blood flow to the systemic circulation to maintain BP. However, how healthy aging affects the renal vasoconstrictor response to LBNP is unknown. Therefore, 10 young (25 ± 1 yr; means ± SE) and 10 older (66 ± 2 yr) subjects underwent graded LBNP (−15 and −30 mmHg) while beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), arterial BP (Finometer), and heart rate (HR; electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as mean BP/RBFV. All baseline cardiovascular variables were similar between groups, except diastolic BP was higher in older subjects ( P < 0.05). Increases in RVR during LBNP were greater in the older group compared with the young group (older: −15 mmHg Δ10 ± 3%, −30 mmHg Δ20 ± 5%; young: −15 mmHg Δ2 ± 2%, −30 mmHg Δ6 ± 2%; P < 0.05). RBFV tended to decrease more ( P = 0.10) and mean BP tended to decrease less ( P = 0.09) during LBNP in the older group compared with the young group. Systolic and diastolic BP, pulse pressure, and HR responses to LBNP were similar between groups. These findings suggest that aging augments the renal vasoconstrictor response to orthostatic stress in humans.


2003 ◽  
Vol 104 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Felix BÖHM ◽  
John PERNOW ◽  
Jonas LINDSTRÖM ◽  
Gunvor AHLBORG

The contribution of the endothelin (ET) receptors ETA and ETB to basal vascular tone and ET-1-induced vasoconstriction in the renal and splanchnic vasculature was investigated in six healthy humans. ET-1 was infused alone and in combination with the selective ETA receptor antagonist BQ123 or the selective ETB receptor antagonist BQ788 on three different occasions. BQ123 did not affect basal arterial blood pressure, splanchnic vascular resistance (SplVR) or renal vascular resistance (RVR), but inhibited the increase in vascular resistance induced by ET-1 [64±18 versus -1±7% in SplVR (P<0.05); 36±6 versus 12±3% in RVR (P<0.0001)]. BQ788 increased basal SplVR and RVR [38±16% (P = 0.01) and 21±5% (P<0.0001) respectively], and potentiated the ET-1-induced vasoconstriction. Plasma ET-1 increased more after ETB blockade than under control conditions or after ETA blockade. These findings suggest that the ETA receptor mediates the splanchnic and renal vasoconstriction induced by ET-1 in healthy humans. The ETB receptor seems to function as a clearance receptor and may modulate vascular tone by altering the plasma concentration of ET-1.


2003 ◽  
Vol 285 (3) ◽  
pp. H1247-H1253 ◽  
Author(s):  
Afsana Momen ◽  
Urs A. Leuenberger ◽  
Chester A. Ray ◽  
Susan Cha ◽  
Brian Handly ◽  
...  

During exercise, the sympathetic nervous system is activated, which causes vasoconstriction. The autonomic mechanisms responsible for this vasoconstriction vary based on the particular tissue being studied. Attempts to examine reflex control of the human renal circulation have been difficult because of technical limitations. In this report, the Doppler technique was used to examine renal flow velocity during four muscle contraction paradigms in conscious humans. Flow velocity was divided by mean arterial blood pressure to yield an index of renal vascular resistance (RVR). Fatiguing static handgrip (40% of maximal voluntary contraction) increased RVR by 76%. During posthandgrip circulatory arrest, RVR remained above baseline (2.1 ± 0.2 vs. 2.8 ± 0.2 arbitrary units; P < 0.017) but was only 40% of the end-grip RVR value. Voluntary biceps contraction increased RVR within 10 s of initiation of contraction. This effect was not associated with an increase in blood pressure. Finally, involuntary biceps contraction also raised RVR. We conclude that muscle contraction evokes renal vasoconstriction in conscious humans. The characteristic of this response is consistent with a primary role for mechanically sensitive afferents. This statement is based on the small posthandgrip circulatory arrest response and the vasoconstriction that was observed with involuntary biceps contraction.


1997 ◽  
Vol 273 (3) ◽  
pp. R1126-R1131 ◽  
Author(s):  
Y. X. Wang ◽  
J. T. Crofton ◽  
S. L. Bealer ◽  
L. Share

The greater pressor response to vasopressin in male than in nonestrous female rats results from a greater increase in total peripheral resistance in males. The present study was performed to identify the vascular beds that contribute to this difference. Mean arterial blood pressure (MABP) and changes in blood flow in the mesenteric and renal arteries and terminal aorta were measured in conscious male and nonestrous female rats 3 h after surgery. Graded intravenous infusions of vasopressin induced greater increases in MABP and mesenteric vascular resistance and a greater decrease in mesenteric blood flow in males. Vasopressin also increased renal vascular resistance to a greater extent in males. Because renal blood flow remained unchanged, this difference may be due to autoregulation. The vasopressin-induced reduction in blood flow and increased resistance in the hindquarters were moderate and did not differ between sexes. Thus the greater vasoconstrictor response to vasopressin in the mesenteric vascular bed of male than nonestrous females contributed importantly to the sexually dimorphic pressor response to vasopressin in these experiments.


2007 ◽  
Vol 293 (6) ◽  
pp. H3432-H3439 ◽  
Author(s):  
Nathan T. Kuipers ◽  
Charity L. Sauder ◽  
Matthew L. Kearney ◽  
Chester A. Ray

The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39°C ( n = 15, 26 ± 1 yr) and cooling at 26°C ( n = 12, 26 ± 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (∼34°C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.


2001 ◽  
Vol 90 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Sandrine H. Launois ◽  
Nathan Averill ◽  
Joseph H. Abraham ◽  
Debra A. Kirby ◽  
J. Woodrow Weiss

Spontaneous and provoked nonrespiratory arousals can be accompanied by a patterned hemodynamic response. To investigate whether a patterned response is also elicited by respiratory arousals, we compared nonrespiratory arousals (NRA) to respiratory arousals (RA) induced by airway occlusion during non-rapid eye movement sleep. We monitored mean arterial blood pressure (MAP), heart rate, iliac and renal blood flow, and sleep stage in 7 pigs during natural sleep. Iliac and renal vascular resistance were calculated. Airway occlusions were obtained by manually inflating a chronically implanted tracheal balloon during sleep. The balloon was quickly deflated as soon as electroencephalogram arousal occurred. As previously reported, NRA generally elicited iliac vasodilation, renal vasoconstriction, little change in MAP, and tachycardia. In contrast, RA generally elicited iliac and renal vasoconstriction, an increase in MAP and tachycardia. The frequent occurrence of iliac vasoconstriction and arterial pressure elevation following RA but not NRA suggests that sleep state change alone does not account for the hemodynamic response to airway occlusion during sleep.


2015 ◽  
Vol 309 (8) ◽  
pp. H1361-H1369 ◽  
Author(s):  
Rachel C. Drew ◽  
Cheryl A. Blaha ◽  
Michael D. Herr ◽  
Sean D. Stocker ◽  
Lawrence I. Sinoway

Low-dose aspirin inhibits thromboxane production and augments the sensitivity of carotid baroreflex (CBR) control of heart rate (HR) during concurrent muscle mechanoreflex and metaboreflex activation in healthy young humans. However, it is unknown how aging affects this response. Therefore, the effect of low-dose aspirin on carotid-cardiac baroreflex sensitivity during muscle mechanoreflex with and without metaboreflex activation in healthy older humans was examined. Twelve older subjects (6 men and 6 women, mean age: 62 ± 1 yr) performed two trials during two visits preceded by 7 days of low-dose aspirin (81 mg) or placebo. One trial involved 3 min of passive calf stretch (mechanoreflex) during 7.5 min of limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise (mechanoreflex and metaboreflex). HR (ECG) and mean arterial blood pressure (MAP; Finometer) were recorded. CBR function was assessed using rapid neck pressure application (+40 to −80 mmHg). Aspirin significantly decreased baseline thromboxane B2 production by 83 ± 4% ( P < 0.05) but did not affect 6-keto-PGF1α. After aspirin, CBR-HR maximal gain and operating point gain were significantly higher during stretch with metabolite accumulation compared with placebo (maximal gain: −0.23 ± 0.03 vs. −0.14 ± 0.02 and operating point gain: −0.11 ± 0.03 vs. −0.04 ± 0.01 beats·min−1·mmHg−1 for aspirin and placebo, respectively, P < 0.05). In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in healthy older humans. This increased sensitivity appears linked to reduced thromboxane sensitization of muscle mechanoreceptors, which consequently improves CBR-HR control.


1997 ◽  
Vol 272 (4) ◽  
pp. H1945-H1951 ◽  
Author(s):  
M. R. Eichinger ◽  
J. M. Resta ◽  
B. R. Walker

Acute hypoxia attenuates agonist-induced constrictor and pressor responses in conscious rats, and a recent report suggests that hypoxia may also diminish myogenic reactivity in isolated, perfused rat kidneys. Thus we hypothesized that the diminished responsiveness to pressor agents during hypoxia is caused by an impairment of myogenic reactivity. Male Sprague-Dawley rats were instrumented with a pulsed Doppler flow probe on the left renal artery, an aortic vascular occluder cuff immediately above the left renal artery to control renal perfusion pressure, and catheters were inserted to measure systemic arterial blood pressure and renal arterial pressure (RAP) and for administration of agents. Animals were studied under normoxic or acute hypoxic (fractional concentration of O2 in inspired gials = 0.12) conditions and were administered phenylephrine, arginine vasopressin, or angiotensin II. To determine the myogenic (pressure-dependent) component of agonist-induced vasoconstriction, renal vascular resistance was calculated during agonist infusion with RAP uncontrolled and with RAP controlled to preinfusion levels. Significant myogenic components of agonist-induced renal vasoconstriction were evident with all pressor agents used. However, hypoxia did not attenuate agonist-induced, pressure-dependent increases in renal vascular resistance. We conclude that the reduced vasoreactivity associated with acute hypoxia is not caused by diminished myogenic reactivity.


Sign in / Sign up

Export Citation Format

Share Document