Response to selection for photoperiod responsiveness on the density and location of mature GnRH-releasing neurons

2005 ◽  
Vol 288 (5) ◽  
pp. R1226-R1236 ◽  
Author(s):  
Mauricio Avigdor ◽  
Shannon D. Sullivan ◽  
Paul D. Heideman

Natural variation in neuroendocrine traits is poorly understood, despite the importance of variation in brain function and evolution. Most rodents in the temperate zones inhibit reproduction and other nonessential functions in short winter photoperiods, but some have little or no reproductive response. We tested whether genetic variability in reproductive seasonality is related to individual differences in the neuronal function of the gonadotropin-releasing hormone network, as assessed by the number and location of mature gonadotropin-releasing hormone-secreting neurons under inhibitory and excitatory photoperiods. The experiments used lines of Peromyscus leucopus previously developed by selection from a wild population. One line contained individuals reproductively inhibited by short photoperiod, and the other line contained individuals nonresponsive to short photoperiod. Expression of mature gonadotropin-releasing hormone (GnRH) immunoreactivity in the brain was detected using SMI-41 antibody in the single-labeled avidin-biotin-peroxidase-complex method. Nonresponsive mice had 50% more immunoreactive GnRH neurons than reproductively inhibited mice in both short- and long-day photoperiods. The greatest differences were in the anterior hypothalamus and preoptic areas. In contrast, we detected no significant within-lines differences in the number or location of immunoreactive GnRH neurons between photoperiod treatments. Our data indicate that high levels of genetic variation in a single wild population for a specific neuronal trait are related to phenotypic variation in a life history trait, i.e., winter reproduction. Variation in GnRH neuronal activity may underlie some of the natural reproductive and life history variation observed in wild populations of P. leucopus. Similar genetic variation in neuronal traits may be present in humans and other species.

2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


2010 ◽  
Vol 298 (6) ◽  
pp. R1543-R1548 ◽  
Author(s):  
Paul D. Heideman ◽  
Julian T. Pittman ◽  
Kristin A. Schubert ◽  
Christen M. R. Dubois ◽  
Jennifer Bowles ◽  
...  

Natural genetic variation in reproduction and life history strategies is a manifestation of variation in underlying regulatory neuronal and endocrine systems. A test of the hypothesis that genetic variation in luteinizing hormone (LH) level could be related to a life history trait, seasonal reproduction, was conducted on artificial selection lines from a wild-source population of white-footed mice ( Peromyscus leucopus ). Variation exists in the degree of suppression of reproduction by winter short-day photoperiods (SD) in wild-source individuals and in the laboratory population. In this population, most individuals from a photoperiod-responsive (R) artificial selection line are strongly suppressed reproductively in SD, while most individuals from a photoperiod-nonresponsive (NR) artificial selection line are only weakly reproductively suppressed in SD. We assayed levels of LH to test for genetic variation between lines that could contribute to variation in reproductive status in SD. Females from both lines were raised in long-day photoperiods (LD) or SD, ovariectomized under isoflurane anesthesia, and given estradiol implants. Levels of LH were significantly higher in the NR line than in the R line, indicating genetic variation for levels of LH. Levels of LH were higher in LD than in SD, indicating that levels of LH were sensitive to photoperiod treatment even with a controlled level of estradiol negative feedback. The results indicate that there is genetic variation in levels of LH that could be functionally important both in the laboratory in SD and in the wild population in winter. Thus genetic variation in levels of LH is a plausible causal factor determining winter reproductive phenotype in the wild population.


2021 ◽  
Author(s):  
Carina Donne ◽  
Katelyn Larkin ◽  
Claire Adrian-Tucci ◽  
Abby Good ◽  
Carson Kephart ◽  
...  

Abstract Potamopyrgus antipodarum is a New Zealand freshwater snail that is invasive worldwide. While native P. antipodarum populations are characterized by frequent coexistence between obligately sexual and obligately asexual individuals, only the asexual snails are known to invade other ecosystems. Despite low genetic diversity and the absence of sex, invasive asexual P. antipodarum are highly successful. Here, we quantified variation in three key life-history traits across invasive P. antipodarum lineages and compared this variation to already documented variation in these same traits in asexual native lineages to provide a deeper understanding of why some lineages become invasive. In particular, we evaluated 1) if invasive lineages of P. antipodarum could be successful because they represent life-history variation from native ancestors that could facilitate invasion, and 2) if invasive populations with higher genetic variation would display relatively high phenotypic variation. We found that invasive snails displayed a non-representative sample of native diversity, with invasive snails growing more slowly and maturing more rapidly than their native counterparts. These results are consistent with expectations of a scenario where invasive lineages represent a subset of native variation that is beneficial in the setting of invasion. Nevertheless, there was no evidence for a relationship between genetic and phenotypic variation, indicating that increased genetic variation does not necessarily translate into greater phenotypic variation, and consistent with earlier studies suggesting an important role for phenotypic plasticity in the P. antipodarum invasion. Together, these results help illuminate the mechanisms driving the worldwide expansion of invasive populations of these snails.


2020 ◽  
Vol 21 (2) ◽  
pp. 529 ◽  
Author(s):  
Klaudia Barabás ◽  
Edina Szabó-Meleg ◽  
István M. Ábrahám

Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.


2020 ◽  
Vol 7 (8) ◽  
pp. 201040
Author(s):  
Jonathon Penix ◽  
R. Anthony DeFazio ◽  
Eden A. Dulka ◽  
Santiago Schnell ◽  
Suzanne M. Moenter

Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common fertility disorder polycystic ovary syndrome (PCOS), persistent high-frequency hormone release is associated with disrupted cycles. We investigated long- and short-term action potential patterns of GnRH neurons in brain slices before and after puberty in female control and prenatally androgenized (PNA) mice, which mimic aspects of PCOS. A Monte Carlo (MC) approach was used to randomize action potential interval order. Dataset distributions were analysed to assess (i) if organization persists in GnRH neuron activity in vitro , and (ii) to determine if any organization changes with development and/or PNA treatment. GnRH neurons in adult control, but not PNA, mice produce long-term patterns different from MC distributions. Short-term patterns differ from MC distributions before puberty but become absorbed into the distributions with maturation, and the distributions narrow. These maturational changes are blunted by PNA treatment. Firing patterns of GnRH neurons in brain slices thus maintain organization dictated at least in part by the biologic status of the source and are disrupted in models of disease.


Sign in / Sign up

Export Citation Format

Share Document