Proton semiconductors and energy transduction in biological systems

1978 ◽  
Vol 235 (3) ◽  
pp. R99-R114 ◽  
Author(s):  
H. J. Morowitz

Energy transduction processes in biology are analyzed in terms of ordered chains of hydrogen bonds. The theory is an extension of studies on proton conductance in ice and is stimulated by current ideas on the role of hydrogen ions in oxidative phosphorylation and photophosphorylation. The possibility of a protochemistry paralleling electrochemistry is presented along with experimental evidence. The theory relating transmembrane electrochemical potential difference of hydrogen ion concentration to the synthesis of ATP is reviewed. The thermodynamics of hydrogen transfer across a membrane is treated including electrochemical and electromechanical factors. As a prelude to considering ATP synthesis, the acid-base dissociation reactions of ATP, ADP, and phosphate are analyzed. The thermodynamics of ATP synthesis is discussed and a detailed model is presented coupling the synthesis to proton transport. The model assumes a gated proton semiconductor that carries protons and allows them to interact specifically with well-defined substrate molecules. The physics of proton transport is outlined and various methods examined in the context of biological membranes. Emphasis is placed on solid-state proton semiconductors and the present theory of such structures is given. A section is included on possible biological applications of these semiconductors.

Author(s):  
O. M. Yonge

1. In the Lamellibranchs, as typified by Pecten maximus, Mya arenaria and Ensis siliqua, the entire, gut has an acid reaction, the stomach being the most acid region and the pH rising along the mid-gut and rectum.2. The origin of the acidity of the gut lies in the style. This has a low pH (5·4 in Pecten and Mytilus, 4·6 in Ensis and 4·45 in Mya), and, after it has been artificially extracted from Mya or induced to disappear, by keeping the animals under abnormal conditions, in Mytilus, Tapes and Pecten, the pH of the stomach invariably rises (by as much as 0·825 in Mya and 0·72 in Tapes), although the pH in the mantle cavity has fallen.3. The style, which dissolves rapidly in alkaline or weakly acid media, is not dissolved in fluids below a certain pH—4·4 for Ensis, 4·2 for Mya, 3·6 for Pecten and Mytilus.4. The style is never absent, even though animals are starved, so long as they are kept under otherwise healthy conditions. The disappearance of the style under abnormal conditions is probably due to a lowering of the vital activities, which include the secretion of the style substance, and the consequent dissolution of the style by the less acid contents of the stomach.5. The style is only maintained as a result of a balance between the rate of its secretion and the rate of its dissolution.6. There is a well-marked correlation between the tolerance of the presence of hydrogen ions possessed by the cilia from the various regions of the gut and the degree of acidity of the fluid with which they are normally surrounded.7. The pH of the gut in five Gastropods has been investigated. The fore-gut and stomach have invariably the lowest pH.8. This acidity may be caused by the salivary glands (Patella and Buccinum), the digestive gland (Doris and Aplysia), or the style (Crepidula).9. The mid-gut and rectum have a high pH, except in Doris, where there is little secretion of mucus, the gut being free and muscular.10. The style of Orepidula has similar properties to those of the Lamellibranchs. It has a pH of 5·8, and is not dissolved in fluid of pH 3·6 or lower.11. The cilia from the gut of Buccinum and Doris can function in a pH of 5·0, but there is little difference in the toleration of the various cilia to the presence of hydrogen ions.


1938 ◽  
Vol s2-80 (320) ◽  
pp. 593-599
Author(s):  
G. J. van OORDT

The structure of the spermatheca of Loligo vulgaris is described; it lies on the inner wall of the buccal membrane and within it large quantities of inactive spermatozoa are stored. This inactivity of the spermatozoa within the spermatheea is attributed to the effect of the secretion of the goblet-cells, situated as unicellular glands on the inner wall of the spermatheca. Inactive spermatozoa from the spermatheca become very active in sea-water, but are immobilized again after a few moments' contact with the pulp of the spermatheca contents. The hydrogen-ion concentration of the spermatheca contents is approximately 6.06; and, since spermatozoa become inactive in sea-water, the hydrogen-ion concentration of which is increased to this level, it seems probable that the inactivity of the spermatozoa within the spermatheca is due to the presence of hydrogen-ions. The spermatheca is functionally comparable to the mammalian epididymis.


2020 ◽  
pp. 2182-2198
Author(s):  
Julian Seifter

The normal pH of human extracellular fluid is maintained within the range of 7.35 to 7.45. The four main types of acid–base disorders can be defined by the relationship between the three variables, pH, Pco2, and HCO3 –. Respiratory disturbances begin with an increase or decrease in pulmonary carbon dioxide clearance which—through a shift in the equilibrium between CO2, H2O, and HCO3 –—favours a decreased hydrogen ion concentration (respiratory alkalosis) or an increased hydrogen ion concentration (respiratory acidosis) respectively. Metabolic acidosis may result when hydrogen ions are added with a nonbicarbonate anion, A−, in the form of HA, in which case bicarbonate is consumed, or when bicarbonate is removed as the sodium or potassium salt, increasing hydrogen ion concentration. Metabolic alkalosis is caused by removal of hydrogen ions or addition of bicarbonate. Laboratory tests usually performed in pursuit of diagnosis, aside from arterial blood gas analysis, include a basic metabolic profile with electrolytes (sodium, potassium, chloride, bicarbonate), blood urea nitrogen, and creatinine. Calculation of the serum anion gap, which is determined by subtracting the sum of chloride and bicarbonate from the serum sodium concentration, is useful. The normal value is 10 to 12 mEq/litre. An elevated value is diagnostic of metabolic acidosis, helpful in the differential diagnosis of the specific metabolic acidosis, and useful in determining the presence of a mixed metabolic disturbance. Acid–base disorders can be associated with (1) transport processes across epithelial cells lining transcellular spaces in the kidney, gastrointestinal tract, and skin; (2) transport of acid anions from intracellular to extracellular spaces—anion gap acidosis; and (3) intake.


2008 ◽  
Vol 363 (1500) ◽  
pp. 2135-2142 ◽  
Author(s):  
Mayumi Nakanishi-Matsui ◽  
Masamitsu Futai

F-ATPases synthesize ATP from ADP and phosphate coupled with an electrochemical proton gradient in bacterial or mitochondrial membranes and can hydrolyse ATP to form the gradient. F-ATPases consist of a catalytic F 1 and proton channel F 0 formed from the α 3 β 3 γδϵ and ab 2 c 10 subunit complexes, respectively. The rotation of γϵ c 10 couples catalyses and proton transport. Consistent with the threefold symmetry of the α 3 β 3 catalytic hexamer, 120° stepped revolution has been observed, each step being divided into two substeps. The ATP-dependent revolution exhibited stochastic fluctuation and was driven by conformation transmission of the β subunit (phosphate-binding P-loop/α-helix B/loop/β-sheet4). Recent results regarding mechanically driven ATP synthesis finally proved the role of rotation in energy coupling.


1930 ◽  
Vol 3 (3) ◽  
pp. 214-223 ◽  
Author(s):  
W. H. Hatcher ◽  
M. G. Sturrock

In the preparation of dihydroxy maleic acid from tartaric acid by hydrogen peroxide in the presence of ferrous sulphate, the very small yields are the result of inactivation of the catalyst by the production of the relatively strong dihydroxy maleic acid; this reaction product undergoes such rearrangement to an isomer as prevents quantitative separation. By means of conductivity measurements of the reaction mixture, the course of the reaction is accurately followed.The existence of the tautomeric keto form of dihydroxy maleic acid, first suggested by Nef as an alternative formula, has been clearly indicated.The search for a procedure which will improve the yield of dihydroxy maleic acid is now restricted to the discovery of some compound which will at the same time reduce the hydrogen ion concentration and shift the equilibrium in favor of the enol form.


Author(s):  
Christopher O. Oriakhi

Water is a weak acid. At 25°C, pure water ionizes to form a hydrogen ion and a hydroxide ion: H2O ⇋ H+ + OH− Hydration of the proton (hydrogen ion) to form hydroxonium ion is ignored here for simplicity. This equilibrium lies mainly to the left; that is, the ionization happens only to a slight extent. We know that 1 L of pure water contains 55.6 mol. Of this, only 10−7 mol actually ionizes into equal amounts of [H+] and [OH−], i.e., [H+] = [OH−] = 10−7M Because these concentrations are equal, pure water is neither acidic nor basic. A solution is acidic if it contains more hydrogen ions than hydroxide ions. Similarly, a solution is basic if it contains more hydroxide ions than hydrogen ions. Acidity is defined as the concentration of hydrated protons (hydrogen ions); basicity is the concentration of hydroxide ions. Pure water ionizes at 25°C to produce 10−7 M of [H+] and 10−7 M of [OH−]. The product Kw = [H+]×[OH−] = 10−7 M×10−7 M= 10−14 M is known as the ionic product of water. Note that this is simply the equilibrium expression for the dissociation of water. This equation holds for any dilute aqueous solution of acid, base, and salt. The pH of a solution is defined as the negative logarithm of the molar concentration of hydrogen ions. The lower the pH, the greater the acidity of the solution. Mathematically: pH=−log10[ H+] or −log10[H3O+] This can also be written as: pH = log10 1/[H+] or log10 1/[H3O+] Taking the antilogarithm of both sides and rearranging gives: [H+] = 10−pH This equation can be used to calculate the hydrogen ion concentration when the pH of the solution is known.


Previously, it has been shown for the enzyme maltase —enzyme requiring an acid medium in which to act to best advantage—that increase in the acidity or hydrogen ion concentration of the medium in which the enzyme acts, beyond the optimum acidity, leads to a fall of optimum temperature. The mechanism of his temperature of this temperature effect appears clearly to be due to a certain disablement of the enzyme activity, estimated at the optimum temperature point; which decrease of activity is itself a function of the degree of acidity of the medium in excess of that necessary to produce optimum activation. Being in this way a disablement effect, the question arises whether, by adding to the quantity of enzyme in action, the lowering of optimum temperature which takes place can be controlled. To answer that question, the experiments described in the present paper were undertaken. For the investigation, the enzyme used is the maltase of Aspergillus oryzœ , the same preparation being employed as studied by us in two previous communications, a specially active specimen of takadiastase, purified by repeated solution in water and reprecipitation by alcohol.


Sign in / Sign up

Export Citation Format

Share Document