Ablation of subfornical organ does not prevent angiotensin-induced water drinking in sheep

1986 ◽  
Vol 250 (6) ◽  
pp. R1052-R1059 ◽  
Author(s):  
M. J. McKinley ◽  
D. A. Denton ◽  
R. G. Park ◽  
R. S. Weisinger

The subfornical organ (SFO) and surrounding periventricular tissue were ablated in sheep. Such a lesion did not significantly reduce water drinking in response to intracarotid, intravenous, or intracerebroventricular infusions of [Val5]angiotensin II amide (ANG II) but caused reduced intake of water in response to intracarotid infusion of hypertonic saline. The dipsogenic response of these sheep to water deprivation for 3 days was similar to that of normal sheep subjected to water deprivation. Although the results are not conclusive in excluding the SFO from having a role in ANG II-induced drinking, they show that there are receptors outside the SFO sensitive to blood-borne ANG II that are involved in water drinking in sheep. The results also show that tissue in the SFO or its surroundings may be involved in drinking caused by acute hypertonicity.

1995 ◽  
Vol 268 (6) ◽  
pp. R1526-R1532 ◽  
Author(s):  
J. R. Blair-West ◽  
D. R. Deam ◽  
D. A. Denton ◽  
E. Tarjan ◽  
R. S. Weisinger

Sheep that were habituated to drinking 10% (vol/vol) ethanol solution instead of water were subjected to proven thirst stimuli to study the effect of chronic ethanol intake on brain mechanisms subserving thirst. Sheep that had not previously drunk 10% ethanol were also tested. All sheep were trained to press a pedal that delivered 50 ml/press of fluid (either 10% ethanol or water) into a drinking cup. In some experiments, fluids were presented in bins. All animals had access to only one fluid at a time. Five ethanol-drinking sheep appeared healthy and maintained body weight over 18 mo. They always preferred water to 10% ethanol. The intracerebroventricular (icv) infusion of angiotensin II (ANG II) at 3.8 micrograms/h for 2 h increased ethanol intake from 15 +/- 10 to 200 +/- 55 ml in the 1st h, but 2,850 +/- 320 ml of water was drunk in the 2nd h. The icv infusion of 500 mM NaCl had a similar effect. After fluid deprivation for 22 or 46 h, ethanol intake in 1 h of access was only 280 +/- 40 and 400 +/- 90 ml, respectively, and 24-h intake was not increased. Water-drinking sheep drank 1,300 +/- 195 ml of water in 1 h after 22-h water deprivation, and 24-h intake was 1.5 times normal. The icv infusion of ANG II in these sheep increased water intake in 1 h from 10 +/- 10 to 1,630 +/- 250 ml and intake of 10% ethanol to only 310 +/- 60 ml. In conclusion, sheep accept 10% ethanol as a substitute for water for daily drinking.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 280 (3) ◽  
pp. R669-R677 ◽  
Author(s):  
Elizabeth M. Starbuck ◽  
Douglas A. Fitts

A lesion of the subfornical organ (SFO) may disrupt drinking after a meal of dry chow as it does drinking after intragastric administration of hypertonic saline. Food and water intakes of SFO-lesioned (SFOX) and sham-lesioned rats were measured during 90-min tests following various lengths of food deprivation. During the tests, all rats began eating before they began drinking. After 20–24 h of food deprivation, latency to begin drinking after eating had started was longer for SFOX than for sham-lesioned rats. Plasma osmolality was elevated by 2–3% in both lesion groups at 12 min, the latency for sham-lesioned rats to drink, but SFOX rats nevertheless continued eating and delayed drinking. Eating after shorter 4-h food deprivations and ad libitum feeding produced more variable drinking latencies and less consistent effects of SFO lesion. During 24 h of water deprivation, SFO lesion had no effect on the suppression of food intake and did not affect food or water intakes during the first 2 h of subsequent rehydration. These findings indicate that the SFO is involved in initiating water intake during eating and in determining drinking patterns and the amount of water ingested during a meal.


1997 ◽  
Vol 273 (1) ◽  
pp. E156-E163 ◽  
Author(s):  
G. L. Sanvitto ◽  
O. Johren ◽  
W. Hauser ◽  
J. M. Saavedra

We studied angiotensin II (ANG II) receptor subtype expression in selected brain nuclei and pituitary gland after water deprivation by in vitro receptor autoradiography using 125I-labeled [Sar1]ANG II and by in situ hybridization using 35S-labeled AT1A, AT1B, and AT2 receptor-specific riboprobes. In control rats we found binding to AT1 receptors in the subfornical organ, paraventricular nucleus, median eminence, and anterior pituitary; AT1A mRNA expression in the subfornical organ and paraventricular nucleus; and AT1B mRNA expression in the anterior pituitary. No receptor mRNA was found in the median eminence. AT1 receptors and AT1A receptor mRNA levels were increased in the subfornical organ, and, in the anterior pituitary, AT1 receptors and AT1B receptor mRNA were increased, only after 5 days of water deprivation. No significant changes occurred after 1 or 3 days of water deprivation, and no regulation of ANG II receptor expression was detected in other brain areas. Our results show that prolonged water deprivation selectively regulates AT1 receptor expression and AT1A and AT1B receptor mRNA levels in the subfornical organ and anterior pituitary, respectively, supporting a role for these receptors during sustained dehydration.


2001 ◽  
Vol 281 (5) ◽  
pp. R1637-R1646 ◽  
Author(s):  
D. J. Sly ◽  
M. J. McKinley ◽  
B. J. Oldfield

This study was undertaken to determine if neurons in the lamina terminalis, previously identified as projecting to the kidney (35), were responsive to alterations in stimuli associated with fluid balance homeostasis. Neurons in the lamina terminalis projecting to the kidney were identified by the retrograde transynaptic transport of Bartha's strain of pseudorabies virus in anesthetized rats. Rats were also exposed to 24-h water deprivation, intravenous hypertonic saline, or intracerebroventricular ANG II. To determine if “kidney-directed” neurons were activated following each stimulus, brain sections that included the lamina terminalis were examined immunohistochemically for viral antigen and Fos protein. With the exception of ANG II in the subfornical organ, all regions of the lamina terminalis contained neurons that were significantly activated by water deprivation, hypertonic saline, and ANG II. These results provide evidence for a neural substrate, which may underpin some of the effects of hypertonic saline and ANG II on renal function thought to be mediated through the lamina terminalis.


1992 ◽  
Vol 263 (4) ◽  
pp. R762-R769 ◽  
Author(s):  
V. L. Brooks ◽  
L. C. Keil

Angiotensin II (ANG II) and vasopressin participate in baroreflex regulation of adrenocorticotropic hormone (ACTH), glucocorticoid, and renin secretion. The purpose of this study was to determine whether this participation is enhanced in water-deprived dogs, with chronically elevated plasma ANG II and vasopressin levels, compared with water-replete dogs. The baroreflex was assessed by infusing increasing doses of nitroprusside (0.3, 0.6, 1.5, and 3.0 micrograms.kg-1.min-1) in both groups of animals. To quantitate the participation of ANG II and vasopressin, the dogs were untreated or pretreated with the competitive ANG II antagonist saralasin, a V1-vasopressin antagonist, or combined V1/V2-vasopressin antagonist, either alone or in combination. The findings were as follows. 1) Larger reflex increases in ANG II, vasopressin, and glucocorticoids, but not ACTH, were produced in water-deprived dogs compared with water-replete dogs. 2) ANG II blockade blunted the glucocorticoid and ACTH responses to hypotension in water-deprived dogs, but not water-replete dogs. In contrast, vasopressin blockade reduced the ACTH response only in water-replete dogs. 3) Vasopressin or combined vasopressin and ANG II blockade reduced the plasma level of glucocorticoids related either to the fall in arterial pressure or to the increase in plasma ACTH concentration in water-replete dogs, and this effect was enhanced in water-deprived dogs. 4) In both water-deprived and water-replete animals, saralasin and/or a V1-antagonist increased the renin response to hypotension, but a combined V1/V2-antagonist did not. These results reemphasize the importance of endogenous ANG II and vasopressin in the regulation of ACTH, glucocorticoid, and renin secretion.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 250 (2) ◽  
pp. R287-R291
Author(s):  
C. E. Wade ◽  
L. C. Keil ◽  
D. J. Ramsay

After alterations in sodium balance, osmotic reactivity of vasopressin (AVP) release was evaluated in seven conscious dogs during bilateral intracarotid infusions of hypertonic saline. A low-sodium diet reduced plasma sodium concentration by 3%; deoxycorticosterone acetate (30 mg/day for 2 days) elevated the concentration by 1%. Neither treatment altered resting plasma AVP. Hypertonic intracarotid infusions increased jugular plasma osmolality by 20 +/- 2 mosmol/kg independent of manipulations. Plasma AVP values were significantly increased (P less than 0.05) in sodium-depleted dogs compared with values of the control animals. In addition, the osmotic reactivity of AVP release was evaluated during exogenous administration of angiotensin II (ANG II). Intravenous infusion of ANG II (5 ng . kg-1 . min-1) increased plasma concentration of ANG II but did not alter concentration of plasma AVP. The slope for the relationship of jugular plasma osmolality to plasma AVP during hypertonic intracarotid infusions was significantly increased with intravenous infusion of ANG II. Sodium depletion and intravenous ANG II potentiate the relationship of plasma osmolality and plasma AVP when evaluated with intracarotid hypertonic saline infusions in dogs.


1985 ◽  
Vol 248 (2) ◽  
pp. E264-E267
Author(s):  
A. Israel ◽  
J. M. Saavedra ◽  
L. Plunkett

Angiotensin II (ANG II) receptors were quantitated in pituitary glands of individual male Long Evans rats by autoradiography after incubation of 8-microns thick pituitary sections with 125I-[Sar1]ANG II. Rat anterior pituitary had a single class of high-affinity saturable ANG II receptors with a Bmax of 1,360 +/- 109 fmol/mg protein and a Ka of 0.510 +/- 0.03 X 10(9) M-1. Five days of water deprivation produced a marked increase in the number of anterior pituitary ANG II receptors (Bmax: 2,428 +/- 233 fmol/mg protein, a 79% increase, P less than 0.001) and a decrease in affinity for the ligand (Ka: 0.337 +/- 0.01 10(9) M-1, a 34% decrease, P less than 0.05). Our results suggest a role for anterior pituitary ANG II receptors in the regulation of fluid and electrolyte metabolism in the rat.


1989 ◽  
Vol 256 (6) ◽  
pp. H1609-H1614 ◽  
Author(s):  
A. J. Nazarali ◽  
J. S. Gutkind ◽  
F. M. Correa ◽  
J. M. Saavedra

We studied brain angiotensin II (ANG II) receptors by quantitative autoradiography in adult normotensive Wistar-Kyoto (WKY) rats and in spontaneously hypertensive rats (SHR) after treating the rats with the converting-enzyme inhibitor enalapril, 25 mg/kg, po daily for 14 days. Enalapril treatment decreased blood pressure in only SHR, inhibited plasma angiotensin-converting enzyme activity by 85%, and increased plasma ANG I concentration and renin activity in both WKY and SHR. In the untreated SHR animals, ANG II receptor concentrations were higher in the subfornical organ, the area postrema, the nucleus of the solitary tract, and the inferior olive when compared with the untreated WKY rats. Enalapril treatment produced a large decrease in only subfornical organ ANG II receptors of SHR. The selective reversal of the alteration in subfornical organ ANG II receptors in SHR may indicate a decreased central response to ANG II and may be related to the mode of action of angiotensin-converting enzyme inhibitors in this model.


Sign in / Sign up

Export Citation Format

Share Document