scholarly journals Endoplasmic reticulum (ER) stress mediates nuclear factor‐κ‐B (NFκB) activation in the subfornical organ (SFO) during slow‐pressor angiotensin‐II (Ang‐II) hypertension

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Colin N. Young ◽  
Robin L. Davisson
2015 ◽  
Vol 308 (10) ◽  
pp. C803-C812 ◽  
Author(s):  
Colin N. Young ◽  
Anfei Li ◽  
Frederick N. Dong ◽  
Julie A. Horwath ◽  
Catharine G. Clark ◽  
...  

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1327
Author(s):  
Kalhara R. Menikdiwela ◽  
Latha Ramalingam ◽  
Mostafa M. Abbas ◽  
Halima Bensmail ◽  
Shane Scoggin ◽  
...  

Overactivation of the renin–angiotensin system (RAS) during obesity disrupts adipocyte metabolic homeostasis and induces endoplasmic reticulum (ER) stress and inflammation; however, underlying mechanisms are not well known. We propose that overexpression of angiotensinogen (Agt), the precursor protein of RAS in adipose tissue or treatment of adipocytes with Angiotensin II (Ang II), RAS bioactive hormone, alters specific microRNAs (miRNA), that target ER stress and inflammation leading to adipocyte dysfunction. Epididymal white adipose tissue (WAT) from B6 wild type (Wt) and transgenic male mice overexpressing Agt (Agt-Tg) in adipose tissue and adipocytes treated with Ang II were used. Small RNA sequencing and microarray in WAT identified differentially expressed miRNAs and genes, out of which miR-690 and mitogen-activated protein kinase kinase 3 (MAP2K3) were validated as significantly up- and down-regulated, respectively, in Agt-Tg, and in Ang II-treated adipocytes compared to respective controls. Additionally, the direct regulatory role of miR-690 on MAP2K3 was confirmed using mimic, inhibitors and dual-luciferase reporter assay. Downstream protein targets of MAP2K3 which include p38, NF-κB, IL-6 and CHOP were all reduced. These results indicate a critical post-transcriptional role for miR-690 in inflammation and ER stress. In conclusion, miR-690 plays a protective function and could be a useful target to reduce obesity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bruna Bezerra Lins ◽  
Fernando Augusto Malavazzi Casare ◽  
Flávia Ferreira Fontenele ◽  
Guilherme Lopes Gonçalves ◽  
Maria Oliveira-Souza

High plasma angiotensin II (Ang II) levels are related to many diseases, including hypertension, and chronic kidney diseases (CKDs). Here, we investigated the relationship among prolonged Ang II infusion/AT1 receptor (AT1R) activation, oxidative stress, and endoplasmic reticulum (ER) stress in kidney tissue. In addition, we explored the chronic effects of Ang II on tubular Na+ transport mechanisms. Male Wistar rats were subjected to sham surgery as a control or prolonged Ang II treatment (200 ng⋅kg–1⋅min–1, 42 days) with or without losartan (10 mg⋅kg–1⋅day–1) for 14 days. Ang II/AT1R induced hypertension with a systolic blood pressure of 173.0 ± 20 mmHg (mmHg, n = 9) compared with 108.0 ± 7 mmHg (mmHg, n = 7) in sham animals. Under these conditions, gene and protein expression levels were evaluated. Prolonged Ang II administration/AT1R activation induced oxidative stress and ER stress with increased Nox2, Nox4, Cyba and Ncf1 mRNA expression, phosphorylated PERK and eIF2α protein expression as well as Atf4 mRNA expression. Ang II/AT1R also raised Il1b, Nfkb1 and Acta2 mRNA expression, suggesting proinflammatory, and profibrotic effects. Regarding Na+ tubular handling, Ang II/AT1R enhanced cortical non-phosphorylated and phospho/S552/NHE3, NHE1, ENaC β, NKCC2, and NCC protein expression. Our results also highlight the therapeutic potential of losartan, which goes beyond the antihypertensive effect, playing an important role in kidney tissue. This treatment reduced oxidative stress and ER stress signals and recovered relevant parameters of the maintenance of renal function, preventing the progression of Ang II-induced CKD.


Nephron ◽  
2021 ◽  
pp. 1-10
Author(s):  
Yumei Zhang ◽  
Yuqing Liu ◽  
Xiao Bi ◽  
Chun Hu ◽  
Wei Ding

<b><i>Background:</i></b> Increasing evidence suggests that angiotensin II (Ang II), the bioactive pro-oxidant in the renin-angiotensin system, aggravates fibrosis, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in multiple diseases, such as renal fibrosis. However, the role and underlying mechanism of Ang II in renal fibrosis remain unclear. Here, we investigated whether the NLRP3 inflammasome mediated Ang II-induced renal fibrosis, as well as the downstream pathways involved in this process. <b><i>Methods:</i></b> NLRP3<sup>−/−</sup> mice were used as a model to study Ang II-infused renal fibrosis. Mice were divided into 4 groups: sham wild type, Ang II-infused wild type, sham NLRP3<sup>−/−</sup>, and Ang II-infused NLRP3<sup>−/−</sup> groups. Ang II infusion-induced renal injury was confirmed by periodic acid-Schiff and Masson’s staining, immunohistochemistry, and transmission electron microscopy (TEM). Mitochondrial morphology was presented on TEM micrographs, and mitochondrial function was reflected by the protein levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), dynamin-related protein 1 (DRP1), and mitofusin 2 (MFN2), as assessed by Western blotting. Endoplasmic reticulum (ER) stress was characterized by changes in the levels of ER chaperones, such as GRP94, BiP, CHOP, and caspase 12. <b><i>Results:</i></b> Ang II infusion increased cell proliferation, extracellular matrix overproduction, inflammatory cell infiltration, and glomerulosclerosis and induced obvious morphological abnormalities in podocytes. Ang II infusion promoted mitochondrial damage, as indicated by TEM, and induced mitochondrial dysfunction, as evidenced by downregulation of PGC-1α, TFAM, and increased mitochondrial ROS. In addition, DRP1 expression was upregulated, while MFN2 expression was markedly decreased. The levels of GRP94, BiP, CHOP, and caspase 12 were significantly increased. However, all these detrimental effects were attenuated by NLRP3 deletion. <b><i>Conclusions:</i></b> NLRP3 deletion may attenuate angiotensin II-induced renal fibrosis by improving mitochondrial dysfunction and ER stress.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Daisuke Kudo ◽  
Hajime Furukawa ◽  
Satoru Eguchi ◽  
Tomoki Hashimoto

Background: Aneurysmal subarachnoid hemorrhage (SAH) can cause significant mortality and morbidity. To develop a therapy for prevention of intracranial aneurysmal rupture and subsequent SAH, it is important to clarify the mechanism of intracranial aneurysmal rupture. Stimulation of the renin-angiotensin system (RAS) causes hypertension and cardiovascular remodeling. Recent evidence shows that angiotensin II enhances endoplasmic reticulum (ER) stress and inhibition of ER stress prevents angiotensin II-induced vascular remodeling but not hypertension in mice. RAS has also been implicated in intracranial aneurysms. We have previously shown that angiotensin II receptor blocker (losartan) prevented intracranial aneurysmal rupture in a mouse model without affecting systemic hypertension. To clarify the mechanism of intracranial aneurysmal rupture via RAS, we have tested our hypothesis that inhibition of ER stress prevents intracranial aneurysmal rupture in a mouse model. Method: We used a mouse model of intracranial aneurysms in which spontaneous aneurysmal rupture causes neurologic symptoms. Intracranial aneurysms were induced in wild type mice by a single stereotactic injection of elastase (35mU) into the cerebrospinal fluid at right basal cistern and deoxycorticosterone (DOCA)-salt hypertension. Vehicle or 4-phenylbutyric acid (PBA, ER stress inhibitor , 100mg/kg/day) was subcutaneously injected into all mice once a day. To detect aneurysmal rupture, we performed daily neurological examinations. Symptomatic mice were euthanized immediately when they developed neurological symptoms, and all asymptomatic mice were euthanized 21 days after aneurysm induction. The incidence of aneurysms and rupture rate were compared between vehicle group and PBA group. Results: The incidence of aneurysms was not significantly different between two groups (100% in vehicle, 20 of 20 vs. 87% in PBA, 20 of 23, p=0.09). However, rupture rate was significantly lower in the PBA group (60%, 12 of 20) than the vehicle group (95%, 19 of 20). (p=0.008). Conclusion: Inhibition of ER stress reduced aneurysmal rupture in a mouse model of intracranial aneurysm induced by combination of elastase injection and DOCA-salt hypertension.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Yu-ping Zhu ◽  
Ze Zheng ◽  
Shaofan Hu ◽  
Xufang Ru ◽  
Zhuo Fan ◽  
...  

The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.


Sign in / Sign up

Export Citation Format

Share Document