Energy expenditure and subsequent nutrient intakes in overfed young men

1990 ◽  
Vol 259 (3) ◽  
pp. R461-R469 ◽  
Author(s):  
S. B. Roberts ◽  
V. R. Young ◽  
P. Fuss ◽  
M. A. Fiatarone ◽  
B. Richard ◽  
...  

We investigated the mechanisms of body weight regulation in young men of normal body weight leading unrestricted lives. Changes in total and resting energy expenditure, body composition, and subsequent voluntary nutrient intakes in response to overeating by 4,230 +/- 115 (SE) kJ/day (1,011 +/- 27 kcal/day) for 21 days were measured in seven subjects consuming a typical diet. On average, 85-90% of the excess energy intake was deposited (with 87% of this amount in fat and 13% in protein on average). There was no detectable difference between individuals in susceptibility to energy deposition. The resting metabolic rate, averaged for fasting and fed states, increased during overfeeding (mean +/- SE, 628 +/- 197 kJ/day, P less than 0.01), but at least some of this amount was obligatory expenditure associated with nutrient assimilation. No significant increase in energy expenditure for physical activity or thermoregulation resulted from overfeeding. Thus energy expenditure did not substantially adapt to increased energy intake. However, significant decreases in voluntary energy intake (1,991 +/- 824 kJ/day, P less than 0.05) and fat intake (48 +/- 11 g/day, P less than 0.01) followed overeating, indicating that adaptive changes in nutrient intakes can contribute significantly to body weight regulation after overeating.

2000 ◽  
Vol 85 (3) ◽  
pp. 1087-1094 ◽  
Author(s):  
Christian Weyer ◽  
Richard E. Pratley ◽  
Arline D. Salbe ◽  
Clifton Bogardus ◽  
Eric Ravussin ◽  
...  

2007 ◽  
Vol 7 (6) ◽  
pp. 613-616 ◽  
Author(s):  
Terry L Davidson ◽  
Scott E Kanoski ◽  
Lindsey A Schier ◽  
Deborah J Clegg ◽  
Stephen C Benoit

1993 ◽  
Vol 264 (5) ◽  
pp. E706-E711 ◽  
Author(s):  
M. I. Goran ◽  
W. H. Carpenter ◽  
E. T. Poehlman

There is a sparsity of data on energy expenditure in young children. We therefore examined the components of daily energy expenditure in a group of 30 children (16 boys, 14 girls; age 4–6 yr) characterized for body weight, height, heart rate, and body composition from bioelectrical resistance. Total energy expenditure (TEE) was measured over 14 days under free living conditions by doubly labeled water, resting energy expenditure (REE) from indirect calorimetry, and activity energy expenditure was estimated from the difference between TEE and REE. Mean TEE was 1,379 +/- 290 kcal/day, which was 475 +/- 202 kcal/day lower than energy intake recommendations for this age group. Activity-related energy expenditure was estimated to be 267 +/- 203 kcal/day. TEE was most significantly related to fat-free mass (FFM; r = 0.86; P < 0.001), body weight (r = 0.83; P < 0.001), and REE (r = 0.80; P < 0.001). When TEE was adjusted for FFM, a significant correlation with heart rate was observed (partial r = 0.54; P = 0.002). Collectively, 86% of interindividual variation in TEE was accounted for by FFM, heart rate, and REE. We conclude that, in young 4- to 6-yr-old children, 1) TEE is approximately 25% lower than current recommendations for energy intake and 2) combined measurement of FFM, heart rate, and REE explain 86% of interindividual variation in TEE, thus providing a possible alternative method to estimate TEE in young children.


1999 ◽  
Vol 79 (2) ◽  
pp. 451-480 ◽  
Author(s):  
Eric Jéquier ◽  
Luc Tappy

The mechanisms involved in body weight regulation in humans include genetic, physiological, and behavioral factors. Stability of body weight and body composition requires that energy intake matches energy expenditure and that nutrient balance is achieved. Human obesity is usually associated with high rates of energy expenditure. In adult individuals, protein and carbohydrate stores vary relatively little, whereas adipose tissue mass may change markedly. A feedback regulatory loop with three distinct steps has been recently identified in rodents: 1) a sensor that monitors the size of adipose tissue mass is represented by the amount of leptin synthesized by adipose cells (a protein encoded by the ob gene) which determines the plasma leptin levels; 2) hypothalamic centers, with specific leptin receptors, which receive and integrate the intensity of the signal; and 3) effector systems that influence the two determinants of energy balance, i.e., energy intake and energy expenditure. With the exception of a few very rare cases, the majority of obese human subjects have high plasma leptin levels that are related to the size of their adipose tissue mass. However, the expected regulatory responses (reduction in food intake and increase in energy expenditure) are not observed in obese individuals. Thus obese humans are resistant to the effect of endogenous leptin, despite unaltered hypothalamic leptin receptors. Whether defects in the leptin signaling cascade play a role in the development of human obesity is a field of great actual interest that needs further research. Present evidences suggest that genetic and environmental factors influence eating behavior of people prone to obesity and that diets that are high in fat or energy dense undermine body weight regulation by promoting an overconsumption of energy relative to need.


2009 ◽  
Vol 297 (1) ◽  
pp. E211-E224 ◽  
Author(s):  
Guang Yang ◽  
Leylla Badeanlou ◽  
Jacek Bielawski ◽  
Amanda J. Roberts ◽  
Yusuf A. Hannun ◽  
...  

Although obesity is associated with multiple features of the metabolic syndrome (insulin resistance, leptin resistance, hepatic steatosis, chronic inflammation, etc.), the molecular changes that promote these conditions are not completely understood. Here, we tested the hypothesis that elevated ceramide biosynthesis contributes to the pathogenesis of obesity and the metabolic syndrome. Chronic treatment for 8 wk of genetically obese ( ob/ob), and, high-fat diet-induced obese (DIO) mice with myriocin, an inhibitor of de novo ceramide synthesis, decreased circulating ceramides. Decreased ceramide was associated with reduced weight, enhanced metabolism and energy expenditure, decreased hepatic steatosis, and improved glucose hemostasis via enhancement of insulin signaling in the liver and muscle. Inhibition of de novo ceramide biosynthesis decreased adipose expression of suppressor of cytokine signaling-3 (SOCS-3) and induced adipose uncoupling protein-3 (UCP3). Moreover, ceramide directly induced SOCS-3 and inhibited UCP3 mRNA in cultured adipocytes suggesting a direct role for ceramide in regulation of metabolism and energy expenditure. Inhibition of de novo ceramide synthesis had no effect on adipose tumor necrosis factor-α (TNF-α) expression but dramatically reduced adipose plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattactant protein-1 (MCP-1). This study highlights a novel role for ceramide biosynthesis in body weight regulation, energy expenditure, and the metabolic syndrome.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sofia Tamini ◽  
Sabrina Cicolini ◽  
Diana Caroli ◽  
Alessandro Sartorio

In the obese population, the prescription of a proper diet plan is essential to ensure an appropriate and gradual weight loss, reduce the risk of weight cycling and favor an overall improvement of health conditions. Energy needs are commonly estimated using predictive equations, even if their accuracy is still debated, especially in severely obese subjects. In the present study, 850 severely obese females admitted to our hospital for a multidisciplinary body weight reduction program (BWRP) were divided into three subgroups, “hypo-,” “normo-,” and “hyper-metabolic,” based on the comparison between estimated resting energy expenditure (eREE, using the Mifflin equation) and measured REE (mREE, using indirect calorimetry). The majority of this study population was considered normo-metabolic (59.4%, mREE between 90 and 110% of eREE), 32.6% was hyper-metabolic (mREE &gt; 110% of eREE) and only 8% was hypo-metabolic (mREE &lt; 90% of eREE). The three subgroups were evaluated before and after a 3-week BWRP, entailing energy restricted diet, adapted physical activity, psychological counseling and nutritional education. Since the diet plan during the BWRP consisted of a 30% reduction of total energy expenditure (obtained by multiplying mREE by the physical activity level), each subgroup responded positively to the BWRP independently from the difference between mREE and eREE, the extent of BMI reduction and clinical, metabolic and physical amelioration being comparable among the three subgroups. By contrast, the restriction of the energy intake based on eREE during the BWRP would have determined a slighter caloric restriction in the hypo-metabolic subgroup, thus determining a smaller body weight reduction, and, by contrast, a more marked caloric restriction in the hyper-metabolic subgroup, probably difficult to be tolerated and maintained for prolonged period. In conclusion, the percentage of subjects with “slow metabolism” in a Caucasian female obese population seeking hospitalization for a BWRP is actually lower than expected, finding controverting the common notion that obesity is mostly due to reduced REE. The high percentage (40%) of inadequate eREE in these female obese populations further underlines the absolute need to include the measurement of REE in the clinical practice for the correct prescription of energy intake in severely obese populations.


Sign in / Sign up

Export Citation Format

Share Document