Changes in insulin sensitivity from stress during repetitive sampling in anesthetized rats

1992 ◽  
Vol 262 (6) ◽  
pp. R1033-R1039 ◽  
Author(s):  
R. H. Rao

The effect of repetitive sampling on insulin sensitivity was studied in anesthetized rats. During glucose clamp studies, glucose disposal decreased from 9.3 +/- 0.9 (SE) to 6.5 +/- 1.1 mg.kg-1.min-1 (P less than 0.05), and hepatic glucose output (HGO) increased from 1.2 +/- 0.8 to 2.4 +/- 1.1 mg.kg-1.min-1 (P less than 0.05) after a cumulative blood loss of 9 ml/kg. After a loss of 15 ml/kg, HGO rose further to 4.7 +/- 1.6 mg.kg-1.min-1 (P less than 0.05). During repetitive sampling under identical conditions, plasma adrenocorticotropic hormone (ACTH) increased, despite simultaneous saline infusion, from 68 +/- 11 to 102 +/- 15 pg/ml (P less than 0.05) with a loss of 8 ml/kg, while plasma insulin increased from 39 +/- 7 to 124 +/- 20 mU/l (P less than 0.01) with a loss of 10 ml/kg. Thereafter, ACTH and insulin rose progressively. Plasma corticosterone closely followed the pattern of the ACTH response, indicating that the stress of cumulative blood loss had a significant effect on adrenal steroid production. Increases in ACTH were retarded by reduced volume loss and accelerated by increased loss. It is concluded that stress from blood loss greater than 7 ml/kg may be a source of error in the evaluation of glucose turnover and insulin sensitivity during clamp experiments in rats.

1987 ◽  
Vol 252 (2) ◽  
pp. E230-E236 ◽  
Author(s):  
M. Lavelle-Jones ◽  
M. H. Scott ◽  
O. Kolterman ◽  
A. H. Rubenstein ◽  
J. M. Olefsky ◽  
...  

By using the euglycemic glucose-clamp technique we have observed the effects of comparable low dose proinsulin and insulin infusions on isotopically determined glucose turnover in 20 anesthetized dogs. In each animal somatostatin (SRIF) infusion was used to suppress endogenous pancreatic hormone secretion and basal glucagon was replaced. Peripheral proinsulin (0.083 micrograms X kg-1 X min-1) and insulin (350 microU X kg-1 X min-1) levels 15- to 20-fold higher than insulin on a molar basis, based on previous observations that proinsulin has only 5-10% the biologic potency of insulin. Three groups of infusion studies were performed: SRIF and glucagon (n = 5); SRIF, glucagon, and proinsulin (n = 10); and SRIF, glucagon, and insulin (n = 5). The mean serum proinsulin level of 2.43 +/- 0.36 pmol/ml achieved represented a 17-fold excess compared with the mean serum insulin level of 0.14 +/- 0.03 pmol (20 +/- 4 microU/ml). At these concentrations, both hormones reduced hepatic glucose production rates by approximately 50% to 2.0 +/- 0.2 mg X kg-1 X min-1 and 1.8 +/- 0.5 mg X kg-1 X min-1, respectively. In contrast, proinsulin failed to stimulate peripheral glucose utilization, whereas insulin led to a 2.0 +/- 0.3 mg X kg-1 X min-1 increment (approximately 50% increase) in glucose uptake (P less than 0.05). Thus at low infusion rates proinsulin exerts its effect predominantly by suppressing hepatic glucose production without measurable stimulation of peripheral glucose disposal. In contrast, for a comparable degree of hepatic glucose output suppression, insulin also significantly stimulates glucose disposal.


1996 ◽  
Vol 148 (2) ◽  
pp. 311-318 ◽  
Author(s):  
R H Rao

Abstract The metabolic effects of angiotensin II (AII) were studied under steady-state conditions of euglycaemic hyperinsulinaemia in anaesthetized rats. Pressor doses of AII (50 and 400 ng/kg per min) had dose-dependent hypertensive and hyperglycaemic effects during glucose clamp studies. Glucose turnover measurements showed that hepatic glucose output (HGO) increased equally at both pressor doses compared with either saline infusion or AII infusion at a dose without a pressor effect (20 ng/kg per min); however, glucose disposal increased significantly only at 50 ng/kg per min. Infusion of the AII receptor antagonist, saralasin, did not itself alter glucose output or disposal significantly, but it abolished the effects of a simultaneous infusion of All. It is concluded that pressor doses of AII increase HGO by a receptor-mediated mechanism that is not related to the pressor response to the hormone. The hyperglycaemic reaction to this metabolic effect of AII is partially offset by increased glucose disposal at lower doses. The physiological significance of these metabolic actions of AII remains to be established, but they raise the possibility that AII could potentially play a role in glucose homeostasis in vivo. Journal of Endocrinology (1996) 148, 311–318


Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3288-3301 ◽  
Author(s):  
Satoru Yamazaki ◽  
Hiroaki Satoh ◽  
Tsuyoshi Watanabe

Abstract We investigated the effects of liraglutide on insulin sensitivity and glucose metabolism in male Wistar rats. The rats were fed a normal chow diet (NCD) or a 60% high-fat diet (HFD) for a total of 4 weeks. After 3 weeks of feeding, they were injected with liraglutide once a day for 7 days. Subsequently, euglycemic-hyperinsulinemic clamp studies were performed after fasting the animals for 8 hours. During the clamp studies on the NCD-fed rats, the glucose infusion rate required for euglycemia was significantly higher in the liraglutide group than in the control group. The clamp hepatic glucose output was significantly lower in the liraglutide group than in the control group, but the insulin-stimulated glucose disposal rate did not change significantly in the liraglutide groups. The clamp studies on the HFD-fed rats revealed that the glucose infusion rate required to achieve euglycemia was significantly higher in the liraglutide group than in the control HFD group, and the insulin-stimulated glucose disposal rate increased significantly in the liraglutide groups. The clamp hepatic glucose output decreased significantly in the liraglutide groups. Consistent with the clamp data, the insulin-stimulated phosphorylation of Akt and AMP-activated protein kinase was enhanced in the livers of the NCD- and HFD-fed rats and in the skeletal muscles of the HFD-fed rats. Oil red O staining indicated that liraglutide also improved hepatic steatosis. In summary, our studies suggest that in normal glucose tolerance states, liraglutide enhances insulin sensitivity in the liver but not in skeletal muscles. However, in insulin-resistant states, liraglutide improves insulin resistance in the liver and muscles and improves fatty liver.


2005 ◽  
Vol 289 (4) ◽  
pp. R1064-R1073 ◽  
Author(s):  
Marcia R. Batista ◽  
Marta S. Smith ◽  
Wanda L. Snead ◽  
Cynthia C. Connolly ◽  
D. Brooks Lacy ◽  
...  

We evaluated the effect of chronic (3 wk) subcutaneous treatment with progesterone and estradiol (PE; producing serum levels observed in the 3rd trimester of pregnancy) or placebo (C) on hepatic and whole body insulin sensitivity and response to hypoglycemia in conscious, overnight-fasted nonpregnant female dogs, using tracer and arteriovenous difference techniques. Insulin was infused peripherally for 3 h at 1.8 mU·kg−1·min−1. Glucose was allowed to fall to 3 mM (Hypo) or maintained at 6 mM (Eugly) by peripheral glucose infusion. Insulin concentrations were significantly higher in Eugly-PE ( n = 7) and Hypo-PE ( n = 7) than in Eugly-C ( n = 6) and Hypo-C groups ( n = 7), but there were no significant differences in hepatic insulin extraction. Concentrations of glucagon, cortisol, epinephrine, and norepinephrine did not differ significantly between Eugly groups or between Hypo groups. Whole body glucose disposal, adjusted for the differences in insulin between groups, was 35% higher in Eugly-C vs. Eugly-PE groups ( P < 0.05). Eugly-C and Eugly-PE groups exhibited similar rates of net hepatic glucose uptake, but the rate of glucose appearance was greater in Eugly-PE in the last hour ( P < 0.05). Net hepatic glucose output was greater ( P < 0.05) in Hypo-PE than in Hypo-C groups, and the glucose infusion rate required to maintain equivalent hypoglycemia was less ( P < 0.05). The rate of gluconeogenic flux did not differ between Hypo groups. Chronic progesterone and estradiol exposure caused whole body (primarily skeletal muscle) insulin resistance and enhanced the liver's response to hypoglycemia without altering counterregulatory hormone concentrations.


1990 ◽  
Vol 259 (2) ◽  
pp. E210-E215 ◽  
Author(s):  
J. R. Lupien ◽  
M. F. Hirshman ◽  
E. S. Horton

The effect of a continuous infusion of norepinephrine (NE) on glucose disposal in vivo was examined in conscious restrained rats using the euglycemic-hyperinsulinemic clamp technique. NE, 1,000 micrograms.kg-1.day-1 (130 nmol.kg-1.h-1) or vehicle (CO) was infused for 10 days in adult male Sprague-Dawley rats using subcutaneously implanted osmotic minipumps. Body weight and food intake were similar in both groups of animals throughout the study. Fasting basal plasma glucose and insulin concentrations were similar in both groups. However, basal hepatic glucose production (HGP) was increased by NE treatment (9.03 +/- 0.63 vs. 13.20 +/- 1.15 mg.kg-1.min-1, P less than 0.05, CO vs. NE, respectively). Insulin infusions of 2, 6, and 200 mU.kg-1.min-1 suppressed HGP to the same degree in both groups. During 2, 6, and 200 mU.kg-1.h-1 insulin infusions the glucose disposal rate was 65, 60, and 13% greater in NE-treated animals than in controls. Acute beta-adrenergic blockade with propranolol infused at 405 nmol.kg-1.h-1 during the glucose clamps did not normalize glucose disposal. These results demonstrate that chronic NE infusion is associated with increased basal glucose turnover and increased insulin sensitivity of peripheral tissues.


1994 ◽  
Vol 77 (2) ◽  
pp. 534-541 ◽  
Author(s):  
J. Gao ◽  
W. M. Sherman ◽  
S. A. McCune ◽  
K. Osei

This study utilized the obese male spontaneously hypertensive heart failure rat (SHHF/Mcc-facp), which has metabolic features very similar to human non-insulin-dependent diabetes mellitus. The purpose of this study was to assess the insulin sensitivity and responsiveness of whole body glucose disposal and insulin suppressability of hepatic glucose production with use of the euglycemic-hyperinsulinemic clamp procedure in 12- to 15-wk-old SHHF/Mcc-facp rats at rest (OS) and 2.5 h after a single session of acute exercise (OE). Lean male SHHF/Mcc-facp rats were sedentary (LS) control animals. At least three clamps producing different insulin-stimulated responses were performed on each animal in a randomized order. At this age the obese animals are normotensive and have not developed congestive heart failure. Compared with LS, OS were significantly hyperglycemic and hyperinsulinemic and insulin sensitivity and responsiveness of whole body glucose uptake and insulin suppressability of hepatic glucose production were significantly decreased. Compared with LS and OS, acute exercise significantly decreased resting plasma glucose but did not alter plasma insulin. Compared with OS, acute exercise significantly increased the insulin responsiveness of whole body glucose disposal but did not affect the sensitivity of whole body glucose disposal or insulin suppressability of hepatic glucose production. Compared with LS, however, acute exercise did not “normalize” the insulin responsiveness of whole body glucose disposal. Thus a single acute exercise session improves but does not normalize whole body insulin resistance in the SHHF/Mcc-facp rat.


2007 ◽  
Vol 55 (1) ◽  
pp. S95-S96
Author(s):  
D. A. McClain ◽  
R. C. Cooksey ◽  
D. L. Jones ◽  
H. A. Jouihan ◽  
M. W. Hazel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document