Allometry of muscle, tendon, and elastic energy storage capacity in mammals

1994 ◽  
Vol 266 (3) ◽  
pp. R1022-R1031 ◽  
Author(s):  
C. M. Pollock ◽  
R. E. Shadwick

This paper considers the structural properties of muscle-tendon units in the hindlimbs of mammals as a function of body mass. Morphometric analysis of the ankle extensors, digital flexors, and digital extensors from 35 quadrupedal species, ranging in body mass from 0.04 to 545 kg, was carried out. Tendon dimensions scale nearly isometrically, as does muscle mass. The negative allometry of muscle fiber length results in positive allometric scaling of muscle cross-sectional areas in all but digital extensors. Maximum muscle forces are predicted to increase allometrically, with mass exponents as high as 0.91 in the plantaris, but nearly isometrically (0.69) in the digital extensors. Thus the maximum amount of stress a tendon may experience in vivo, as indicated by the ratio of muscle and tendon cross-sectional areas, increases with body mass in digital flexors and ankle extensors. Consequently, the capacity for elastic energy storage scales with positive allometry in these tendons but is isometric in the digital extensors, which probably do not function as springs in normal locomotion. These results suggest that the springlike tendons of large mammals can potentially store more elastic strain energy than those of smaller mammals because their disproportionately stronger muscles can impose higher tendon stresses.

Endocrine ◽  
2021 ◽  
Author(s):  
David J. Tomlinson ◽  
Robert M. Erskine ◽  
Christopher I. Morse ◽  
Joseph M. Pappachan ◽  
Emmanuel Sanderson-Gillard ◽  
...  

Abstract Purpose We investigated the combined impact of ageing and obesity on Achilles tendon (AT) properties in vivo in men, utilizing three classification methods of obesity. Method Forty healthy, untrained men were categorised by age (young (18–49 years); older (50–80 years)), body mass index (BMI; normal weight (≥18.5–<25); overweight (≥25–<30); obese (≥30)), body fat% (normal adipose (<28%); high adiposity (≥28%)) and fat mass index (FMI; normal (3–6); excess fat (>6–9); high fat (>9). Assessment of body composition used dual-energy X-ray absorptiometry, gastrocnemius medialis (GM)/AT properties used dynamometry and ultrasonography and endocrine profiling used multiplex luminometry. Results Older men had lower total range of motion (ROM; −11%; P = 0.020), GM AT force (−29%; P < 0.001), stiffness (−18%; P = 0.041), Young’s modulus (−22%; P = 0.011) and AT stress (−28%; P < 0.001). All three methods of classifying obesity revealed obesity to be associated with lower total ROM (P = 0.014–0.039). AT cross sectional area (CSA) was larger with higher BMI (P = 0.030). However, after controlling for age, higher BMI only tended to be associated with greater tendon stiffness (P = 0.074). Interestingly, both AT CSA and stiffness were positively correlated with body mass (r = 0.644 and r = 0.520) and BMI (r = 0.541 and r = 0.493) in the young but not older adults. Finally, negative relationships were observed between AT CSA and pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. Conclusions This is the first study to provide evidence of positive adaptations in tendon stiffness and size in vivo resulting from increased mass and BMI in young but not older men, irrespective of obesity classification.


2014 ◽  
Author(s):  
Luis P Lamas ◽  
Russell P Main ◽  
John R. Hutchinson

Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n=17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length and the two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle-tendon units in emus.


Author(s):  
Luis P Lamas ◽  
Russell P Main ◽  
John R. Hutchinson

Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n=17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length and the two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle-tendon units in emus.


1998 ◽  
Vol 201 (23) ◽  
pp. 3197-3210 ◽  
Author(s):  
C. S. Gregersen ◽  
N. A. Silverton ◽  
D. R. Carrier

The storage and recovery of elastic strain energy in muscles and tendons increases the economy of locomotion in running vertebrates. In this investigation, we compared the negative and positive external work produced at individual limb joints of running dogs to evaluate which muscle-tendon systems contribute to elastic storage and to determine the extent to which the external work of locomotion is produced by muscles that shorten actively rather than by muscles that function as springs. We found that the negative and positive external work of the extensor muscles is not allocated equally among the different joints and limbs. During both trotting and galloping, the vast majority of the negative work was produced by the two distal joints, the wrist and ankle. The forelimb produced most of the negative work in both the trot and the gallop. The hindlimb produced most of the positive work during galloping, but not during trotting. With regards to elastic storage, our results indicate that the forelimb of dogs displays a greater potential for storage and recovery of elastic energy than does the hindlimb. Elastic storage appears to be more important during trotting than during galloping, and elastic storage appears to be more pronounced in the extensor muscles of the distal joints than in the extensor muscles of the proximal joints. Furthermore, our analysis indicates that a significant portion of the external work of locomotion, 26% during trotting and 56 % during galloping, is produced by actively shortening muscles. We conclude that, although elastic storage of energy is extremely important to the economy of running gaits, actively shortening muscles do make an important contribution to the work of locomotion.


1990 ◽  
Vol 259 (2) ◽  
pp. R223-R230 ◽  
Author(s):  
R. L. Marsh

The kinetic properties of muscle that could influence locomotor frequency include rate of activation, rate of cross-bridge "attachment", intrinsic shortening velocity, and rate of deactivation. The latter two mechanisms are examined using examples from high-speed running in lizards and escape swimming in scallops. During running, inertial loading and elastic energy storage probably mitigate the effects of thermal alterations in intrinsic muscle shortening velocity. The result is a rather low thermal dependence of stride frequency over a 15-20 degree C temperature range. However, at lower temperatures, the longer times required for deactivation cause the thermal dependence of frequency to increase greatly. Scallops use a single muscle to swim by jet propulsion. In vivo shortening velocity in these animals also shows a low thermal dependence. As with high-speed running, the mechanics of jet propulsion may limit the effects of thermally induced changes in intrinsic shortening velocity. The largest thermal effect during swimming is on the initial phase of valve opening. The effects of temperature on the rate of deactivation of the adductor muscle could play an important role in limiting reextension of the muscle, which is dependent on elastic energy storage in the hinge ligament. These examples illustrate that the relative importance of various intrinsic contractile properties in controlling locomotor performance depends on the mechanics of the movements.


Science ◽  
2013 ◽  
Vol 340 (6137) ◽  
pp. 1217-1220 ◽  
Author(s):  
N. T. George ◽  
T. C. Irving ◽  
C. D. Williams ◽  
T. L. Daniel

Muscles not only generate force. They may act as springs, providing energy storage to drive locomotion. Although extensible myofilaments are implicated as sites of energy storage, we show that intramuscular temperature gradients may enable molecular motors (cross-bridges) to store elastic strain energy. By using time-resolved small-angle x-ray diffraction paired with in situ measurements of mechanical energy exchange in flight muscles of Manduca sexta, we produced high-speed movies of x-ray equatorial reflections, indicating cross-bridge association with myofilaments. A temperature gradient within the flight muscle leads to lower cross-bridge cycling in the cooler regions. Those cross-bridges could elastically return energy at the extrema of muscle lengthening and shortening, helping drive cyclic wing motions. These results suggest that cross-bridges can perform functions other than contraction, acting as molecular links for elastic energy storage.


2020 ◽  
Vol 7 (10) ◽  
pp. 201105
Author(s):  
Bowen Wu ◽  
Xiangyu Wang ◽  
Jianbiao Bai ◽  
Wenda Wu ◽  
Ningkang Meng ◽  
...  

High pre-tension bolt is an effective strata control technique and is the key to ensure the stability of anchorage and roadway. Based on the performances of high energy storage tension rock bolts in different rock properties, this study proposed a constitutive model to describe the energy balance of anchor under uniaxial compression. UDEC was used to simulate the behaviour of anchor in coal under uniaxial compression and the results were analysed to study the rock mechanical properties, degree of damage and energy evolution. Simulation results showed that tension rock bolts can improve the mechanical properties and energy storage capacities of the anchor. The energy evolution was divided into three stages: (i) the external work was stored in the form of elastic strain energy ( U e ) in the anchor prior to the yielding strength; (ii) the elastic strain energy reached its maximum near the peak strength; (iii) energy was dissipated from fracture friction ( W f) , plastic deformation ( W p ) and acoustic emission ( U r ) during post-peak stage. The installation of tension rock bolts was more suitable for medium hard rock (e.g. sandy mudstone), whereas it was not effective for hard rock (e.g. sandstone).


2020 ◽  
Author(s):  
Mohamadreza Kharazi ◽  
Sebastian Bohm ◽  
Christos Theodorakis ◽  
Falk Mersmann ◽  
Adamantios Arampatzis

AbstractThe purpose of the current study was to assess Achilles tendon (AT) mechanical loading and strain energy during locomotion using a new in vivo approach for measuring AT length that considers the AT curve-path shape. Eleven participants walked at 1.4 m/s and ran at 2.5 m/s and 3.5 m/s on a treadmill. AT length, defined as the distance between its origin at the gastrocnemius medialis myotendinous junction (MTJ) and the calcaneal insertion, was determined experimentally by integrating kinematics and ultrasound analysis. Small foil markers were placed on the skin covering the AT path from the origin to the insertion, and the MTJ, tracked using ultrasonography, was projected to the reconstructed skin to account for their misalignment. Skin-to-bone displacements were assessed during a passive rotation (5 °/s) of the ankle joint and considered in the calculation of AT length. Force and strain energy of the AT during locomotion were calculated by fitting a quadratic function to the experimentally measured tendon force-length curve obtained from maximum voluntary isometric contractions. Maximum AT strain and force were affected by speed (p<0.05, ranging from 4.0 to 4.9% strain and 1.989 to 2.556 kN), yet insufficient in magnitude to be considered an effective stimulus for tendon adaptation. Further, we found a recoil of elastic strain energy at the beginning of the stance phase of running (70-77 ms after touch down) between 1.7 ±0.6 and 1.9 ±1.1 J, which might be functionally relevant for running efficiency.Summary statementA new accurate in vivo approach to assess Achilles tendon strain, force and strain energy during locomotion.


2021 ◽  
Author(s):  
Hongwang Du ◽  
Dongdong Yang ◽  
Wei Xiong

Abstract Aiming at problems of low energy storage efficiency and unstable energy output of existing accumulators, this paper proposes a novel constant pressure elastic strain energy accumulator based on the rubber material hyperelastic effect, which can store and release energy with steady constant pressure. Based on exergy analysis method, constant pressure elastic strain energy accumulator charging/discharging energy storage efficiency is analyzed. Then Mullins effect on the rubber airbag multiple charging/discharging cycles is studied. Finally, a test platform is set up to verify the energy storage efficiency, expansion and contraction pressure stability of the rubber accumulator during charging/discharging cycles. Compared with enthalpy analysis method, experiment results show that energy storage efficiency calculation by the exergy analysis method is more accurate. In more than 200 cycle tests, rubber airbag energy storage efficiency is always higher than 76%, and expansion pressure and contraction pressure errors under steady state are less than 2.92e-3MPa and 1.79e-3MPa, respectively. The results show that the rubber airbag can be used as an effective energy storage component, which is very meaningful for energy recovery in pneumatic or hydraulic systems.


1990 ◽  
Vol 68 (3) ◽  
pp. 1033-1040 ◽  
Author(s):  
R. E. Shadwick

We investigated the possibility that tendons that normally experience relatively high stresses and function as springs during locomotion, such as digital flexors, might develop different mechanical properties from those that experience only relatively low stresses, such as digital extensors. At birth the digital flexor and extensor tendons of pigs have identical mechanical properties, exhibiting higher extensibility and mechanical hysteresis and lower elastic modulus, tensile strength, and elastic energy storage capability than adult tendons. With growth and aging these tendons become much stronger, stiffer, less extensible, and more resilient than at birth. Furthermore, these alterations in elastic properties occur to a significantly greater degree in the high-load-bearing flexors than in the low-stress extensors. At maturity the pig digital flexor tendons have twice the tensile strength and elastic modulus but only half the strain energy dissipation of the corresponding extensor tendons. A morphometric analysis of the digital muscles provides an estimate of maximal in vivo tendon stresses and suggests that the muscle-tendon unit of the digital flexor is designed to function as an elastic energy storage element whereas that of the digital extensor is not. Thus the differences in material properties between mature flexor and extensor tendons are correlated with their physiological functions, i.e., the flexor is much better suited to act as an effective biological spring than is the extensor.


Sign in / Sign up

Export Citation Format

Share Document