Vasopressin actions on area postrema neurons in vitro

1995 ◽  
Vol 269 (2) ◽  
pp. R463-R468
Author(s):  
V. L. Lowes ◽  
K. Sun ◽  
Z. Li ◽  
A. V. Ferguson

The area postrema (AP) is a circumventricular organ located on the dorsal surface of the medulla. Substantial evidence suggests that the AP is an important site involved in cardiovascular regulation. Arginine vasopressin (AVP) is thought to act at the AP to increase the sensitivity of the baroreceptor reflex. We have therefore examined the effects of AVP on AP neurons with the use of extracellular single unit recordings in vitro. Coronal medullary brain slices (thickness = 400 microns) were obtained from male Sprague-Dawley rats and maintained in oxygenated artificial cerebrospinal fluid (aCSF). The slices were perfused with AVP (10(-8) to 10(-6) M), and the effect on single AP neurons was recorded. A total of 79 AP neurons was tested of which 50 (63.3%) were excited by AVP and 5 (6.3%) were inhibited, whereas the remaining 24 (30.3%) cells were unaffected. The excitatory effects of AVP were dose dependent: firing rate increased 92.6 +/- 25.8% at 10(-8) M, 289.4 +/- 53.9% at 10(-7) M, and 456.8 +/- 113.1% at 10(-6) M, respectively. We also examined whether these effects of AVP resulted from direct actions of this peptide on AP cells by testing if responses were retained during blockade of synaptic transmission (achieved by perfusion with a low Ca(2+)-high Mg2+ aCSF) in 11 cells excited by AVP. Nine of these cells were excited by AVP during such synaptic blockade. Finally, we demonstrated that the excitatory responses of five AP cells to AVP were all totally abolished by perfusion of slices with aCSF containing the V1 antagonist ([1-beta-mercapto-beta,beta-cyclopentamethylene propionic acid,2-(O-methyl)tyrosine]-Arg8-vasopressin; Peninsula Laboratories, 10(-6) M).(ABSTRACT TRUNCATED AT 250 WORDS)

1996 ◽  
Vol 270 (4) ◽  
pp. R920-R925 ◽  
Author(s):  
M. A. Allen ◽  
A. V. Ferguson

Adrenomedullin (ADM) is a recently discovered 52-amino acid peptide that exerts potent vasodilatory effects in the periphery and influences the control of body fluid balance when injected centrally. In this study extracellular single-unit recordings were obtained from 94 AP neurons in rat brain slices. Bath application of ADM (10(-7) M) excited 47% (32 of 68) of cells tested, and these effects were found to be dose dependent from 10(-7) to 10(-9) M. Excitation was maintained during synaptic blockade in a low-Ca2+ artificial cerebrospinal fluid solution, demonstrating direct actions of ADM on these neurons. The remaining cells were either unaffected (n = 25) or inhibited (n = 11) by ADM. ADM (10(-7) M) also influenced the spontaneous activity of 9 (7 inhibited, 2 excited) of 16 neurons located in the nucleus tractus solitarii (NTS). However, these effects could be eliminated during synaptic blockade, suggesting indirect actions of the peptide on NTS neurons. These data demonstrate that a specific population of CNS neurons within the AP are directly influenced by ADM and suggest that ADM may exert its effects on the central control of fluid balance through direct actions at this circumventricular organ.


1997 ◽  
Vol 87 (5) ◽  
pp. 1191-1198 ◽  
Author(s):  
Neil E. Farber ◽  
Christopher P. Harkin ◽  
Jennifer Niedfeldt ◽  
Antal G. Hudetz ◽  
John P. Kampine ◽  
...  

Background Volatile anesthetics are potent cerebral vasodilators. Although the predominant site of cerebrovascular resistance is attributed to intracerebral arterioles, no studies have compared the actions of volatile anesthetics on intraparenchymal microvessels. The authors compared the effects of halothane and isoflurane on intracerebral arteriolar responsiveness in hippocampal and neocortical microvessels using a brain slice preparation. Method After Institutional Review Board approval, hippocampal or neocortical brain slices were prepared from anesthetized Sprague-Dawley rats and placed in a perfusion-recording chamber, superfused with artificial cerebrospinal fluid. Arteriolar diameters were monitored with videomicroscopy before, during, and after halothane or isoflurane were equilibrated in the perfusate. PGF2alpha preconstricted vessels before anesthetic administration. A blinded observer using a computerized videomicrometer analyzed diameter changes. Results Baseline microvessel diameter and the degree of preconstriction were not different between groups. In the hippocampus, the volatile agents produced similar, concentration-dependent dilation (expressed as percent of preconstricted control +/- SEM) of 68 +/- 6% and 79 +/- 9% (1 MAC) and 120 +/- 3% and 109 +/- 5% (2 MAC) (P < 0.05) during halothane and isoflurane, respectively. In the cerebral cortex, isoflurane caused significantly less vasodilation than did similar MAC levels of halothane (84 +/- 9% vs. 42 +/- 5% dilation at 1 MAC; 121 +/- 4% vs. 83 +/- 5% dilation at 2 MAC halothane vs. isoflurane, respectively). Conclusion Halothane and isoflurane differentially produce dose-dependent dilation of intraparenchymal cerebral microvessels. These findings suggest that local effects of the volatile anesthetics on intracerebral microvessel diameter contribute significantly to alterations in cerebrovascular resistance and support previously described heterogeneous actions on cerebral blood flow produced by these agents.


1996 ◽  
Vol 270 (2) ◽  
pp. R342-R347 ◽  
Author(s):  
P. M. Smith ◽  
A. V. Ferguson

Extracellular single-unit recordings were obtained from area postrema neurons (AP), and peristimulus histograms were used to determine the effects of paraventricular nucleus (PVN) stimulation on these cells from anesthetized Sprague-Dawley rats. Of 91 AP cells tested, 30.8% responded to PVN stimulation with a short-latency (28.2 +/- 3.3 ms, mean +/- SE), short-duration (49.3 +/- 8.0 ms) excitation, whereas 8.6% were inhibited. In animals that had stimulation sites outside of PVN (non-PVN), only 4 of the 72 AP cells tested (5.6%) were influenced by stimulation. These excitatory effects of PVN stimulation on AP neurons were unaffected by V1-receptor blockade. Of 93 nucleus of the solitary tract (NTS) cells tested, 38.9% responded to PVN stimulation with a short-latency (18.5 +/- 2.4 ms), short-duration (48.8 +/- 9.6 ms) excitation and 22.2% with short-latency (20.75 +/- 4.1 ms), long-duration (204.4 +/- 44.9 ms) inhibitions. In contrast, non-PVN stimulation sites influenced only 19% of NTS neurons tested, all of which were excited. These data demonstrate that activation of PVN neurons elicits excitatory effects on the majority of AP neurons influenced. They further emphasize the potential significance of descending hypothalamic inputs in controlling neuronal activity in this circumventricular organ.


1997 ◽  
Vol 272 (5) ◽  
pp. R1625-R1630 ◽  
Author(s):  
K. Sun ◽  
A. V. Ferguson

Peripheral cholecystokinin (CCK) reduces food intake and triggers the secretion of both oxytocin and corticotropin-releasing hormone. These responses are partially initiated by activation of receptors in the peripheral endings of the vagus nerve. However, in vivo studies showing that after vagotomy systemic CCK induces fos activation of neurons in the area postrema (AP) suggest that circulating CCK may directly influence the activity of neurons in this structure. The present study was therefore designed to investigate the responsiveness of AP neurons to CCK using in vitro extracellular single-unit recording techniques. Bath application of 100 nM CCK for 200 s resulted in excitatory responses in 41% and inhibitory effects in 6% of 143 AP neurons tested. Application of multiple doses of CCK (1-100 nM) to single neurons demonstrated that CCK effects were dose dependent. The firing rate of tested neurons increased by 48 +/- 15% in response to 1 nM, by 89 +/- 22% in response to 10 nM, and by 242 +/- 77% in response to 100 nM CCK. After we blockaded synaptic transmission with a low-Ca2+/high-Mg2+ artificial cerebrospinal fluid, the excitatory effects of CCK remained in all nine neurons tested. The CCK-receptor antagonist L-364,718 had no significant effect on the responses to CCK (P > 0.1, n = 4), whereas, after perfusion of slices with the CCKB-receptor antagonist L-365,260, mean responses to CCK were significantly reduced to 12.6 +/- 4.7% of the control value (P < 0.001, n = 4). These results demonstrate a direct and dose-dependent excitatory action of CCK on AP neurons that is abolished by CCKB-receptor antagonists. These data emphasize the potential role of AP in processing afferent information derived from circulating peptide concentrations that could be involved in the regulation of food intake.


Author(s):  
Shams M. Ghoneim ◽  
Frank M. Faraci ◽  
Gary L. Baumbach

The area postrema is a circumventricular organ in the brain stem and is one of the regions in the brain that lacks a fully functional blood-brain barrier. Recently, we found that disruption of the microcirculation during acute hypertension is greater in area postrema than in the adjacent brain stem. In contrast, hyperosmolar disruption of the microcirculation is greater in brain stem. The objective of this study was to compare ultrastructural characteristics of the microcirculation in area postrema and adjacent brain stem.We studied 5 Sprague-Dawley rats. Horseradish peroxidase was injected intravenously and allowed to circulate for 1, 5 or 15 minutes. Following perfusion of the upper body with 2.25% glutaraldehyde in 0.1 M sodium cacodylate, the brain stem was removed, embedded in agar, and chopped into 50-70 μm sections with a TC-Sorvall tissue chopper. Sections of brain stem were incubated for 1 hour in a solution of 3,3' diaminobenzidine tetrahydrochloride (0.05%) in 0.05M Tris buffer with 1% H2O2.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Himanshu Kushwah ◽  
Nidhi Sandal ◽  
Meenakshi Chauhan ◽  
Gaurav Mittal

Abstract Background Uncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field. This study evaluates in vitro and in vivo hemostatic potential of four biopolymeric natural gums, namely, gum tragacanth, guar gum, xanthan gum, and gum acacia. In vitro evaluation of whole blood clotting time and erythrocyte agglutination assay were carried out. In vitro cytotoxicity studies with respect to each gum were done in human lymphocytes to ascertain percent cell viability. In vivo hemostatic potential of each gum (as sponge dressing and powder form) was evaluated in Sprague Dawley rats using tail bleeding assay and compared with commercially available hemostatic sponge. Other important parameters like (a) time taken for complete hemostasis, (b) amount of blood absorbed, (c) adherence strength of developed hemostatic dressing(s), (d) incidence of re-bleeding, and (e) survival of animals were also studied. Results Of the four test gums studied, xanthan gum (@3mg/ml of blood) and gum tragacanth (@35mg/ml of blood) were able to clot blood in least time (58.75±6.408 s and 59.00±2.082 s, respectively) and exhibited very good hemostatic potential in vitro. Except for xanthan gum, all other test gums did not exhibit any significant cytotoxicity at different time points till 24 h. In rat tail bleeding experiments, gum tragacanth sponge dressing and powder achieved hemostasis in least time (156.2±12.86 s and 76±12.55 s, respectively) and much earlier than commercially available product (333.3±38.84 s; p˂0.01). Conclusion Results indicate potential of gum tragacanth to be developed into a suitable hemostatic product.


1991 ◽  
Vol 7 (3) ◽  
pp. 125-139 ◽  
Author(s):  
David R. Bevan ◽  
David M. Ruggio

To evaluate health risks associated with exposure to particulates in the environment, it is necessary to quantify the bioavailability of carcinogens associated with the particulates. Direct analysis of bioavailability in vivo is most readily accomplished by adsorbing a radiolabeled form of the carcinogen to the particulate. A sam ple of native diesel particulate collected from an Oldsmobile die sel engine that contained 1.03 μ g benzo[ a] pyrene ( BaP)/ g particulate was supplemented with exogenous [ 3 H]- BaP to pro duce a particulate containing 2.62 μ g BaP/g. To insure that elu tion of BaP from native and [3 H] -BaP-supplemented particulate was similar, in vitro analyses were performed. When using phos pholipid vesicles composed of dimyristoylphosphatidylcholine (DMPC), 1.52% of total BaP was eluted from native particulate into the vesicles in 18 hrs; from [ 3 H] -BaP supplemented particu late, 1.68% was eluted. Using toluene as eluent, 2.55% was eluted from native particulate, and 8.25% from supplemented particulate, in 6 hrs. Supplemented particulate was then instilled intratracheally into male Sprague-Dawley rats and distribution of radioactivity was analyzed at selected times over 3 days. About 50% of radioactivity remained in lungs at 3 days following instil lation, with 30% being excreted into feces and the remainder dis tributed throughout the organs of the rats. To estimate the amount of radioactivity that entered feces through swallowing of a portion of the instilled dose, [3 H] -BaP-supplemented particu late was instilled intratracheally into rats that had a cannula sur gically implanted in the bile duct. Rate of elimination of radio activity into bile was monitored; 10.6% of radioactivity was re covered in 6 hr, an amount slightly lower than the 12.8% ex creted in 6 hrs into feces of animals with intact bile ducts. Our studies provide a quantitative description of the distribution of BaP and its metabolites following intratracheal instillation of diesel particulate. Because rates of elution of BaP in vitro are similar for native diesel particulate and particulate with supple mental [ 3H] -BaP, our results provide a reasonable estimate of the bioavailability in vivo of BaP associated with diesel particu late.


2013 ◽  
Vol 32 (5) ◽  
pp. 385-394 ◽  
Author(s):  
Antoinette Y. Odendaal ◽  
Narendra S. Deshmukh ◽  
Tennille K. Marx ◽  
Alexander G. Schauss ◽  
John R. Endres ◽  
...  

This toxicological assessment evaluated the safety of a hydroethanolic extract prepared from Caralluma fimbriata (CFE), a dietary supplement marketed worldwide as an appetite suppressant. Studies included 2 in vitro genotoxicity assays, a repeated dose oral toxicity study, and a developmental study in rats. No evidence of in vitro mutagenicity or clastogenicity surfaced in the in vitro studies at concentrations up to 5000 μg of extract/plate (Ames test) or 5000 μg of extract/mL (chromosomal aberration test). No deaths or treatment-related toxicity were seen in the 6-month chronic oral toxicity study in Sprague-Dawley rats conducted at 3 doses (100, 300, and 1000 mg/kg body weight (bw)/d). The no observed effect level for CFE in this study was considered to be 1000 mg/kg bw/d. A prenatal developmental toxicity study conducted at 3 doses (250, 500, and 1000 mg/kg bw/d) in female Sprague-Dawley rats resulted in no treatment-related external, visceral, or skeletal fetal abnormalities, and no treatment-related maternal or pregnancy alterations were seen at and up to the maximum dose tested. CFE was not associated with any toxicity or adverse events.


1998 ◽  
Vol 274 (4) ◽  
pp. R1119-R1124 ◽  
Author(s):  
Shogo Sesoko ◽  
Hiromi Muratani ◽  
Masanobu Yamazato ◽  
Hiroshi Teruya ◽  
Shuichi Takishita ◽  
...  

The inhibitory action of α2-agonists on the cardiovascular neurons has been elucidated in the rostral ventrolateral medulla (RVLM) but not in the caudal ventrolateral medulla (CVLM). Our study aimed to clarify whether microinjection of clonidine into the CVLM elicits any cardiovascular effect and whether endogenous α2-adrenoceptor-mediated mechanisms contribute to the tonic activity of the CVLM neurons. In male Sprague-Dawley rats (7–9 wk old, 270–320 g) anesthetized with urethan, unilateral microinjection of 8 nmol of clonidine into the CVLM ( n = 10) increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) by 12.1 ± 1.8 mmHg (mean ± SE, P < 0.01) and 25.8 ± 4.8% ( P < 0.01), while heart rate (HR) remained unaltered. Unilateral microinjection of 2 nmol of SKF-86466, a selective blocker of the α2-adrenoceptors, into the CVLM ( n = 10) decreased MAP, HR, and RSNA (−11.6 ± 2.6 mmHg, −26 ± 7 beats/min, and −15.3 ± 1.7%, respectively, P < 0.01 for each). Artificial cerebrospinal fluid caused neither a cardiovascular effect nor a sympathetic response. Prior injection of SKF-86466 into the ipsilateral CVLM attenuated the effects of clonidine. Bilateral microinjection of muscimol into the RVLM abolished the effects of both clonidine and SKF-86466 injected into the CVLM. The pressor and sympathoexcitatory effects of clonidine injected into the CVLM suggest a neuroinhibitory action of the drug on the CVLM neurons. In addition,the depressor and sympathoinhibitory effects of SKF-86466 injected into the CVLM indicated that activation of α2-adrenoceptors by endogenous ligand inhibits CVLM neurons. The effects of clonidine and the α2-adrenoceptor antagonist in the CVLM require the integrity of the RVLM.


Sign in / Sign up

Export Citation Format

Share Document