Renal responses to amino acids in the sheep fetus

1996 ◽  
Vol 270 (6) ◽  
pp. R1226-R1230 ◽  
Author(s):  
L. L. Woods ◽  
A. R. Hohimer ◽  
L. E. Davis

Adult animals and humans are known to increase renal blood flow and glomerular filtration rate (GFR) in response to an acute protein load or amino acid infusion; however, the ontogeny of this phenomenon is not known. This study was designed to test the hypothesis that, despite normally high baseline amino acid levels in the fetus, increases in plasma amino acids stimulate increases in GFR before birth. Eight chronically instrumented fetal sheep (126 +/- 1 days gestation) were infused with a mixture of amino acids (0.15 and 0.30 mmol . kg-1 . min-1 i.v.). Plasma alpha-amino nitrogen levels increased significantly from 7.1 +/- 0.3 to 13.0 +/- 0.9 and 25.5 +/- 2.1 mg/dl, respectively, in response to the two doses, and GFR increased significantly from 3.2 +/- 0.4 to 4.0 +/- 0.5 and 4.6 +/- 0.5 ml/min, respectively. Arterial pressure did not change. Renal amino acid reabsorption was significantly increased at all time points during the amino acid infusion, reaching a value nearly five times that of control by the last clearance period. Na+ reabsorption was also increased throughout the infusion. Na+, K+, and Cl- excretions increased significantly only at the very last time point. These data indicate that the mechanism or mechanisms responsible for amino acid-induced hyperfiltration are present and functional even before birth in the sheep. Because maternal eating patterns and protein intake are known to change maternal plasma amino acid levels and amino acids are actively transported across the placenta, our findings suggest that both acute and chronic changes in maternal protein intake may alter fetal renal function.

1988 ◽  
Vol 74 (5) ◽  
pp. 539-545 ◽  
Author(s):  
Hans Heindorff ◽  
Hendrik Vilstrup ◽  
Ditlev Bucher ◽  
Per Billesbølle ◽  
Vibeke Thygesen

1. The effect of elective, uncomplicated cholecystectomy on plasma clearances of amino acids and on amino acid-stimulated urea synthesis was investigated in 10 patients, pre-operatively and on the first post-operative day, and compared with six controls treated identically apart from the surgery. 2. A mixture of amino acids was given as a prime-continuous infusion. Steady-state concentrations 75% higher than basal were attained and were maintained for 90 min. The clearances of amino acids were calculated as the ratios between amino acid infusion rate and the concentration. The urea synthesis rate was calculated as urinary excretion corrected for accumulation and intestinal loss. 3. After surgery the fasting plasma concentrations of alanine, arginine, glutamine plus glutamate, glycine, proline, lysine and threonine decreased by 20–30%, but were unchanged in the control group. The plasma clearance of α-amino nitrogen increased from 5.1 ± 1.2 ml/s before surgery (mean ± sd) to 6.1 ± 1.1 ml/s (P < 0.05, paired t-test) after surgery due to increased clearances of the above-mentioned amino acids. In the control group, the clearance decreased from 6.4 ± 1.6 to 5.9 ± 1.1 (P < 0.05, paired t-test). The amino acid-stimulated urea synthesis rate after surgery was 37 ± 9 μmol of N/s vs 30 ± 6 (P < 0.01, paired t-test) in the controls despite a lower α-amino nitrogen concentration (4.5 ± 0.5 mmol/l vs 5.1 ± 0.5 mmol/l, P < 0.05, paired t-test). The post-operative urea synthesis rate exceeded the amino nitrogen infusion by 20%. 4. Post-operatively, the insulin response to the amino acid infusion more than doubled, and the glucagon response increased by 54 %. Fasting Cortisol doubled but decreased similarly to controls during amino acid infusion. 5. After surgery amino nitrogen was cleared from the plasma pool by the liver more rapidly than it was released into the pool. 6. Our data indicate that the liver is partly responsible for the post-operative catabolism. This is not attributable to increased substrate load on the liver, but results from changed hepatic kinetics of amino nitrogen conversion. The altered hormonal responses may play a role in this condition.


2018 ◽  
Vol 315 (6) ◽  
pp. E1143-E1153 ◽  
Author(s):  
Sandra G. Wai ◽  
Paul J. Rozance ◽  
Stephanie R. Wesolowski ◽  
William W. Hay ◽  
Laura D. Brown

Overcoming impaired growth in an intrauterine growth-restricted (IUGR) fetus has potential to improve neonatal morbidity, long-term growth, and metabolic health outcomes. The extent to which fetal anabolic capacity persists as the IUGR condition progresses is not known. We subjected fetal sheep to chronic placental insufficiency and tested whether prolonged amino acid infusion would increase protein accretion in these IUGR fetuses. IUGR fetal sheep were infused for 10 days with either mixed amino acids providing ~2 g·kg−1·day−1 (IUGR-AA) or saline (IUGR-Sal) during late gestation. At the end of the infusion, fetal plasma leucine, isoleucine, lysine, methionine, and arginine concentrations were higher in the IUGR-AA than IUGR-Sal group ( P < 0.05). Fetal plasma glucose, oxygen, insulin, IGF-1, cortisol, and norepinephrine concentrations were similar between IUGR groups, but glucagon concentrations were fourfold higher in the IUGR-AA group ( P < 0.05). Net umbilical amino acid uptake rate did not differ between IUGR groups; thus the total amino acid delivery rate (net umbilical amino acid uptake + infusion rate) was higher in the IUGR-AA than IUGR-Sal group (30 ± 4 vs. 19 ± 1 μmol·kg−1·min−1, P < 0.05). Net umbilical glucose, lactate, and oxygen uptake rates were similar between IUGR groups. Fetal leucine oxidation rate, measured using a leucine tracer, was higher in the IUGR-AA than IUGR-Sal group (2.5 ± 0.3 vs. 1.7 ± 0.3 μmol·kg−1·min−1, P < 0.05). Fetal protein accretion rate was not statistically different between the IUGR groups (1.6 ± 0.4 and 0.8 ± 0.3 μmol·kg−1·min−1 in IUGR-AA and IUGR-Sal, respectively) due to variability in response to amino acids. Prolonged amino acid infusion into IUGR fetal sheep increased leucine oxidation rates with variable anabolic response.


1986 ◽  
Vol 250 (4) ◽  
pp. E407-E413 ◽  
Author(s):  
R. A. Gelfand ◽  
M. G. Glickman ◽  
R. Jacob ◽  
R. S. Sherwin ◽  
R. A. DeFronzo

To compare the contributions of splanchnic and skeletal muscle tissues to the disposal of intravenously administered amino acids, regional amino acid exchange was measured across the splanchnic bed and leg in 11 normal volunteers. Postabsorptively, net release of amino acids by leg (largely alanine and glutamine) was complemented by the net splanchnic uptake of amino acids. Amino acid infusion via peripheral vein (0.2 g X kg-1 X h-1) caused a doubling of plasma insulin and glucagon levels and a threefold rise in blood amino acid concentrations. Both splanchnic and leg tissues showed significant uptake of infused amino acids. Splanchnic tissues accounted for approximately 70% of the total body amino acid nitrogen disposal; splanchnic uptake was greatest for the glucogenic amino acids but also included significant quantities of branched-chain amino acids. In contrast, leg amino acid uptake was dominated by the branched-chain amino acids. Based on the measured leg balance, body skeletal muscle was estimated to remove approximately 25-30% of the total infused amino acid load and approximately 65-70% of the infused branched-chain amino acids. Amino acid infusion significantly stimulated both the leg efflux and the splanchnic uptake of glutamine (not contained in the infusate). We conclude that when amino acids are infused peripherally in normal humans, splanchnic viscera (liver and gut) are the major sites of amino acid disposal.


2005 ◽  
Vol 289 (4) ◽  
pp. R1099-R1106 ◽  
Author(s):  
Amanda C. Boyce ◽  
Karen J. Gibson ◽  
E. Marelyn Wintour ◽  
Irene Koukoulas ◽  
Eugenie R. Lumbers

These experiments examined whether renal growth and the fetal renin-angiotensin system could be stimulated by infusion of amino acids and whether chronic amino acid infusions restored glomerulotubular balance, which had been disrupted during 4-h infusions. Five fetal sheep aged 122 ± 1 days gestation received an infusion of alanine, glycine, proline and serine in 0.15 M saline at 0.22 mmol/min for 7 days. Six control fetuses were given saline at the same rate (5 ml/h). Kidney wet weights after amino acid infusion were 28% larger than control fetuses ( P < 0.05), and renal angiotensinogen mRNA levels were ∼2.6-fold higher ( P < 0.005). Circulating renin levels and renal renin mRNA levels were suppressed ( P < 0.05), and renal renin protein levels tended to be lower. Arterial pressure was increased, and there was a marked, sustained natriuresis and diuresis. Glomerular filtration rate and filtered sodium were ∼two-fold higher throughout infusion ( P < 0.05). Fractional proximal sodium reabsorption, suppressed at 4 h (from 73.4 ± 6.5 to 53.7 ± 10.2%), did not return to control levels (36.1 ± 3.4% on day 7, P < 0.05). Distal sodium reabsorption was markedly increased (from 79 ± 25 to 261 ± 75 μmol/min by day 7, P < 0.005), but this was not sufficient to restore glomerulotubular balance. The resultant high rates of sodium excretion led to hyponatremia and polyhydramnios. In conclusion, long-term amino acid infusions increased renal angiotensinogen gene expression, kidney weight, and distal nephron sodium reabsorptive capacity but failed to restore proximal and total glomerulotubular balance.


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


2004 ◽  
Vol 100 (3) ◽  
pp. 634-639 ◽  
Author(s):  
Yasufumi Nakajima ◽  
Akira Takamata ◽  
Takashi Matsukawa ◽  
Daniel I. Sessler ◽  
Yoshihiro Kitamura ◽  
...  

Background Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. Therefore, the authors tested the hypothesis that amino acid infusion increases the thermoregulatory set point. Methods Nine male volunteers each participated on 4 study days in randomized order: (1) intravenous amino acids infused at 4 kJ x kg(-1) x h(-1) for 2.5 h combined with skin-surface warming, (2) amino acid infusion combined with cutaneous cooling, (3) saline infusion combined with skin-surface warming, and (4) saline infusion combined with cutaneous cooling. Results Amino acid infusion increased resting core temperature by 0.3 +/- 0.1 degrees C (mean +/- SD) and oxygen consumption by 18 +/- 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean skin temperature of 34 degrees C) for active cutaneous vasodilation by 0.3 +/- 0.3 degrees C, for sweating by 0.2 +/- 0.2 degrees C, for thermoregulatory vasoconstriction by 0.3 +/- 0.3 degrees C, and for thermogenesis by 0.4 +/- 0.5 degrees C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses. Conclusions Amino acid infusion increased the metabolic rate and the resting core temperature. However, amino acids also produced a synchronous increase in all major autonomic thermoregulatory defense thresholds; the increase in core temperature was identical to the set point increase, even in a cold environment with amble potential to dissipate heat. In subjects with intact thermoregulatory defenses, amino acid-induced hyperthermia seems to result from an increased set point rather than increased metabolic rate per se.


1990 ◽  
Vol 79 (5) ◽  
pp. 457-466 ◽  
Author(s):  
Rita J. Louard ◽  
Eugene J. Barrett ◽  
Robert A. Gelfand

1. Using the forearm balance method, together with systemic infusions of l-[ring-2,6-3H]phenylalanine and l-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/ or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.


2009 ◽  
Vol 296 (1) ◽  
pp. E56-E63 ◽  
Author(s):  
Laura D. Brown ◽  
Paul J. Rozance ◽  
James S. Barry ◽  
Jacob E. Friedman ◽  
William W. Hay

During late gestation, amino acids and insulin promote skeletal muscle protein synthesis. However, the independent effects of amino acids and insulin on the regulation of mRNA translation initiation in the fetus are relatively unknown. The purpose of this study was to determine whether acute amino acid infusion in the late-gestation ovine fetus, with and without a simultaneous increase in fetal insulin concentration, activates translation initiation pathway(s) in skeletal muscle. Fetuses received saline (C), mixed amino acid infusion plus somatostatin infusion to suppress amino acid-stimulated fetal insulin secretion (AA+S), mixed amino acid infusion with concomitant physiological increase in fetal insulin (AA), or high-dose insulin infusion with euglycemia and euaminoacidemia (HI). After a 2-h infusion period, fetal skeletal muscle was harvested under in vivo steady-state conditions and frozen for quantification of proteins both upstream and downstream of mammalian target of rapamycin (mTOR). In the AA group, we found a threefold increase in ribosomal protein S6 kinase (p70S6k) and Erk1/2 phosphorylation; however, blocking the physiological rise in insulin with somatostatin in the AA+S group prevented this increase. In the HI group, Akt, Erk1/2, p70S6k, and ribosomal protein S6 were highly phosphorylated and 4E-binding protein 1 (4E-BP1) associated with eukaryotic initiation factor (eIF)4E decreased by 30%. These data show that insulin is a significant regulator of intermediates involved in translation initiation in ovine fetal skeletal muscle. Furthermore, the effect of amino acids is dependent on a concomitant increase in fetal insulin concentrations, because amino acid infusion upregulates p70S6k and Erk only when amino acid-stimulated increase in insulin occurs.


1994 ◽  
Vol 266 (3) ◽  
pp. E396-E402 ◽  
Author(s):  
T. Brundin ◽  
J. Wahren

The thermic effect of amino acid administration was examined in healthy subjects. Pulmonary and splanchnic oxygen uptake, cardiac output, splanchnic blood flow, and blood temperatures were measured in eight healthy men before and during 2.5 h of intravenous infusion of 600 kJ of a mixture of 19 amino acids. Indirect calorimetry and catheter techniques were used, including thermometry in arterial and a hepatic venous blood. During the infusion, pulmonary oxygen uptake rose progressively from a basal value of 269 +/- 6 to 321 +/- 8 ml/min after 2.5 h. The splanchnic oxygen consumption increased from a basal level of 64 +/- 4 to a peak value of 91 +/- 7 ml/min after 2 h of infusion. The 2.5 h average splanchnic proportion of the amino acid-induced whole body thermogenesis was 51 +/- 11%. Cardiac output increased from 6.2 +/- 0.3 in the basal state to 7.3 +/- 0.4 l/min, whereas the splanchnic blood flow remained unchanged during the infusion period. The arteriohepatic venous oxygen difference increased from 51 +/- 4 in the basal state to 65 +/- 5 ml/l after 2 h of amino acid infusion. The blood temperature rose by approximately 0.25 degrees C during the amino acid infusion, reflecting an increased heat accumulation in the body. It is concluded that the splanchnic tissues account for approximately one-half of the amino acid-induced whole body thermogenesis, that amino acid infusion augments blood flow in the extrasplanchnic but not in the splanchnic tissues, and stimulates the accumulation of heat in the body most likely via a resetting of the central thermosensors.


Sign in / Sign up

Export Citation Format

Share Document