Glucose regulation of the IGF response system in chondrocytes: induction of an IGF-I-resistant state

1999 ◽  
Vol 276 (4) ◽  
pp. R1164-R1171 ◽  
Author(s):  
K. M. Kelley ◽  
T. R. Johnson ◽  
J. Ilan ◽  
R. W. Moskowitz

Nonresponsiveness to the growth-stimulatory actions of insulin-like growth factor (IGF)-I in chondrocytes has been reported in a number of disease states associated with impaired glucose metabolism. Primary rabbit chondrocytes were investigated for changes in their IGF response system [type-I IGF receptor and IGF-binding protein (IGFBP) expression] and in their ability to mount a synthetic response to IGF-I [as35S-labeled proteoglycan ([35S]PG) production] in media containing varying ambient glucose concentrations. Whereas basal [35S]PG synthetic rate was unaffected by glucose concentration, synthetic responsiveness to IGF-I was lost in media containing <5 mmol/l glucose or in media containing a “diabetic” glucose concentration (25 mmol/l). IGFBP expression, as measured by Northern analysis of mRNA levels and Western ligand blotting of secreted protein levels, was not significantly altered in the different glucose media, nor were there any differences in the cell surface localization of IGFBPs as assessed by affinity cross-linking with 125I-labeled IGF-I, suggesting that IGFBPs do not induce the IGF-I resistance. The nonresponsiveness to IGF-I in reduced glucose occurred with 25–50% reductions in steady-state levels of IGF type-I receptor mRNA and protein. A significant correlation between IGF receptor mRNA level and synthetic response to IGF-I was observed between 0 and 10 mmol/l glucose concentrations, suggesting that the loss of responsiveness in reduced glucose is manifested at the level of transcription and/or receptor mRNA stability. In contrast, nonresponsiveness to IGF-I in chondrocytes in diabetic glucose concentrations occurred without changes in receptor mRNA and protein levels, suggesting that IGF-I resistance was due to post-ligand-binding receptor defects. It is proposed that IGF-I resistance in chondrocytes subjected to inappropriate glucose levels may constitute an important pathogenic mechanism in degenerative cartilage disorders.

1995 ◽  
Vol 132 (4) ◽  
pp. 497-501 ◽  
Author(s):  
Saul Malozowski ◽  
Toni G Parmer ◽  
Sabina Trojan ◽  
George R Merriam ◽  
Geula Gibori ◽  
...  

Malozowski S, Parmer TG, Trojan S, Merriam GR, Gibori G, Roberts Jr CT, LeRoith D, Werner H, Zilberstein M. Growth hormone (GH) modulates insulin-like growth factor I (IGF-I) and type I IGF receptor mRNA levels in the ovary of prepubertal GH-deficient rats. Eur J Endocrinol 1995;132:497–501. ISSN 0804–4643 In order to explore the potential role of growth hormone (GH) in modulating insulin-like growth factor I (IGF-I) gene expression in the prepubertal rat ovary, female rats were rendered GH deficient by neonatal administration of monosodium glutamate (MSG). One group of rats received vehicle and served as the control. At 21 days of age, MSG-treated rats received either GH or vehicle for 2 weeks. On days 21, 24, 28 and 31 animals were weighed and subsets were sacrificed for liver RNA extraction. The remaining animals were sacrificed at day 35 when livers and ovaries were collected, and serum was obtained for GH determinations. The IGF-I mRNA levels were estimated by Northern blots and corroborated further by slot-blot analysis. The MSG-treated rats had lower body weights (p < 0.01) and GH levels (p < 0.05) than controls. Growth hormone replacement significantly accelerated the weight gain of MSG-treated rats. At day 24 and thereafter, three RNA IGF-I species (7.5, 1.8 and 0.8–1.2 kB) were seen in the liver. In the ovary, at age 35 days, two major IGF-I mRNA species (7.5 and 0.8–1.2kb) were seen. The MSG treatment consistently reduced the levels of both IGF-I mRNA species in the ovary. Growth hormone administration partially restored their expression, both in the liver and in the ovary. In addition, ovarian type I IGF receptor mRNA levels were increased in the MSG-treated rats when compared to controls. This trend was reversed by GH replacement. In summary, we have found that in prepubertal female rats rendered GH deficient with MSG, ovarian IGF-I gene expression is reduced while type I IGF receptor mRNA levels are increased. These findings are reversed with GH replacement. These results suggest a physiological role for GH in modulating IGF-I and type I IGF receptor genes in the ovary. Saul Malozowski, FDA, HFD-510, Rockville, MD 20897, USA


2002 ◽  
Vol 174 (2) ◽  
pp. 343-352 ◽  
Author(s):  
JJ Smink ◽  
JA Koedam ◽  
JG Koster ◽  
SC van Buul-Offers

High (pharmacological) doses of glucocorticoids inhibit the proliferation of growth plate chondrocytes, which leads to one of the side-effects of these steroids, namely suppression of longitudinal growth. Growth inhibition by glucocorticoids is thought to be mediated in part by impaired action of components of the IGF axis, which are important for chondrocyte regulation and hence for longitudinal growth. The aim of the present study was to determine whether glucocorticoid-induced growth retardation involves changes in IGF axis components. Chondrocytes were isolated from epiphyseal growth plates of neonatal piglets and treated with pharmacological doses of dexamethasone (DXM) for 24 h to study glucocorticoid-induced growth retardation. Under IGF-I-supplemented (10 nM) culture conditions, IGF-binding proteins (IGFBPs)-2, -4 and -5 were secreted by the growth plate chondrocytes and IGFBP-2 protein and mRNA levels were decreased by the DXM treatment, whereas IGFBP-4 and -5 were not affected. Proliferation of the chondrocytes, as measured by [(3)H]thymidine incorporation, was 3.5-fold higher in serum-supplemented medium in contrast to IGF-I-supplemented (10 nM) medium. In the presence of serum, DNA synthesis was significantly inhibited by 50-63% when treated with 100 nM DXM, which was prevented by the glucocorticoid-receptor antagonist Org34116. mRNA levels of IGF axis components were determined using Northern blot analysis. IGFBP-2 to -6 were expressed in the chondrocytes, IGFBP-1 was absent and both IGF-I and IGF-II, and the type I and type II IGF receptors were expressed. Treatment with DXM (100 nM) resulted in a 2-fold increase in mRNA levels of both IGFBP-5 and the type I IGF receptor, whereas IGFBP-2 mRNA levels decreased by 55%, in concert with the decrease in protein level observed under IGF-I-supplemented culture conditions. The changes in mRNA levels due to the DXM treatment were prevented by the glucocorticoid receptor antagonist. Our data show that exposure to pharmacological doses of DXM results in inhibition of proliferation and changes in components of the IGF axis, IGFBP-2 and -5 and the type I IGF receptor, suggesting a role for these components in glucocorticoid-induced growth retardation at the local level of the growth plate.


1993 ◽  
Vol 137 (3) ◽  
pp. 473-483 ◽  
Author(s):  
C. Y. Lee ◽  
F. W. Bazer ◽  
F. A. Simmen

ABSTRACT To gain insight into the involvement and interactions of the insulin-like growth factors (IGFs) and oestrogen in mammary growth and differentiation, the temporal expression of mammary mRNAs encoding components of the IGF system in pregnant and pseudopregnant pigs was examined. Pseudopregnant pigs received 5 mg oestradiol valerate or vehicle daily from day 45 after oestrus and underwent mammary biopsy on days 60, 90 or 112. In mammary tissue of pregnant pigs, steady-state levels of the mRNAs encoding IGF-I, IGF-II and type-I IGF receptor as well as the levels of the membrane-associated type-II IGF receptor were higher during the early phase of mammogenesis (≤day 45) than during the subsequent stages of mammary development. Mammary IGF-I, IGF-II and type-I receptor mRNAs were expressed at their lowest levels around day 90 of pregnancy (20–40% of those for day 30 of pregnancy) coincident with the onset of β-casein mRNA accumulation. Mammary IGF-binding protein-2 (IGFBP-2) mRNA levels increased twofold during the latter half of pregnancy, whereas the amount of IGFBP-3 mRNA declined after day 30 to undetectable levels by midpregnancy. Pseudopregnant pigs had reduced levels of these mRNAs (except for IGF-II) relative to their pregnant counterparts and this was associated with premature differentiation of mammary tissue as reflected by an earlier onset of β-casein mRNA accumulation in the former. The administration of oestradiol valerate decreased the levels of IGF-I and type-I IGF receptor mRNAs by day 60 of pseudopregnancy, but the reverse was evident by day 112. Oestradiol administration increased β-casein mRNA levels in pseudopregnant pigs, but had no effect on mammary IGFBP-2 and IGFBP-3 mRNA levels. Mammary IGF content was greater in late pregnancy (≥day 90) and pseudopregnancy than at early pregnancy. Serum IGF-I and IGF-II levels declined steadily during pregnancy and this was similar to, but not correlated with, mammary IGF mRNA levels, whereas in pseudopregnant pigs, serum IGF concentrations did not change temporally or in response to oestradiol. Serum IGFBP-2 levels were unaltered during pregnancy or pseudopregnancy, but serum IGFBP-3 levels declined after day 60 of pregnancy. In pseudopregnant pigs, serum IGFBP-3 levels did not change temporally, but declined after oestradiol treatment. Results indicate that mammary IGF-I and type-I IGF receptor systems are down-regulated during pregnancy-associated differentiation of this tissue and in response to oestrogen. Locally produced (autocrine and paracrine) IGFs are likely to mediate mammogenesis, whereas oestrogen stimulates mammary differentiation and lactogenesis in the pig. However, the high mammary IGF content and the reciprocal expression of mammary IGFBP-2 and IGFBP-3 mRNAs during late pregnancy suggests the involvement of IGFs in lactogenesis as well. Journal of Endocrinology (1993) 137, 473–483


1994 ◽  
Vol 12 (1) ◽  
pp. 3-12 ◽  
Author(s):  
D G Armstrong ◽  
C O Hogg

ABSTRACT An RNase protection assay is described that allowed the quantitative analysis of chicken type-I IGF receptor mRNA transcripts. The transcripts were measured in extracts of total nucleic acid (TNA) and, under the hybridization conditions described, protected probes of the expected size were obtained. The RNA-RNA hybrids could be quantified in the presence of at least a 1000-fold molar excess of DNA containing sequences which were complimentary to the RNA probe. The amount of protected probe was linearly related to the amount of TNA in the hybridization reaction medium, and this allowed the results to be expressed in the form of mRNA molecules/cell. Type-I IGF receptor mRNA transcripts were detected in all the tissues examined from a 20day-old chick embryo. Their amount ranged from 5 to 24 molecules/cell, in the order liver<breast muscle<leg muscle<heart<brain. The amount of receptor mRNA was 65- to 300-fold less than that of β-actin mRNA. The quantity of type-I IGF receptor mRNA varied significantly throughout embryonic and post-hatch development. Maximum amounts were measured in 21-day-old embryos (a two- to fourfold increase relative to 16-day-old embryos). Thereafter the amount of receptor mRNA decreased, during the 4-week period after hatching, to levels which were significantly lower than that observed in 16-day-old embryos. Throughout the period of embryonic and post-hatch development described here the amount of β-actin mRNA remained constant, indicating that the changes in the quantity of receptor mRNA were due to specific mechanisms acting directly on the steady-state levels of type-I IGF receptor mRNA. Selection for increased growth had no effect on the amount of type-I IGF receptor mRNA. The result was the same when expressed either as molecules/cell or as a percentage of β-actin mRNA.


2005 ◽  
Vol 186 (1) ◽  
pp. 145-155 ◽  
Author(s):  
S Shaikh ◽  
F H Bloomfield ◽  
M K Bauer ◽  
H H Phua ◽  
R S Gilmour ◽  
...  

We have previously reported that chronic intra-amniotic supplementation of the late gestation growth-restricted (IUGR) ovine fetus with IGF-I (20 μg/day) increased gut growth but reduced liver weight and circulating IGF-I concentrations. Here we report mRNA and protein levels of IGF-I, the type 1 IGF receptor (IGF-1R) and IGF-binding proteins (IGFBP)-1, -2 and -3 in fetal gut, liver, muscle and placenta from fetuses in that earlier study in an attempt to explain these contrasting results. mRNA and protein were extracted from tissues obtained at post mortem at 131 days of gestation (term, 145 days) from three groups of fetuses (control, IUGR+saline and IUGR+IGF-I, n=9 per group). Control fetuses were unembolised and untreated. In the IUGR groups, growth restriction was induced from 113 to 120 days by placental embolisation; from 120 to 130 days fetuses were treated with daily intra-amniotic injections of either saline or 20 μg IGF-I. mRNA was measured by RT-PCR or real-time RT-PCR, and protein by Western blot. In liver, muscle and placenta, IGF-I mRNA and protein levels were reduced by between 8 and 30% in IGF-I-treated fetuses compared with saline-treated fetuses and controls with no change in IGF-1R mRNA or protein levels. In contrast, in the gut, IGF-I mRNA and protein levels were not significantly altered with IGF-I treatment, but IGF-1R levels were increased, especially in the jejunum. Immunolocalisation demonstrated that IGF-1R expression was confined to the luminal aspect of the gut. mRNA levels of all three IGFBPs were reduced in the gut of IGF-I-treated fetuses, but hepatic expression was significantly increased. These data demonstrated tissue-specific regulation of IGF-I, IGF-1R and IGFBPs-1, -2 and -3 in response to intra-amniotic IGF-I supplementation, though the underlying mechanisms remain obscure.


1993 ◽  
Vol 136 (2) ◽  
pp. 191-198 ◽  
Author(s):  
T. A. Anderson ◽  
L. R. Bennett ◽  
M. A. Conlon ◽  
P. C. Owens

ABSTRACT The presence of insulin-like growth factor-I (IGF-I)-related molecules and IGF-binding factors in blood from golden perch, Macquaria ambigua, an Australian native freshwater fish, was investigated. Serum was acidified to dissociate IGF and IGF-binding protein complexes that might be present, and fractionated by size-exclusion high-performance liquid chromatography at pH 2·8. Fractions were neutralized and their activities assessed by (i) an immunoassay for mammalian IGF-I which also detects chicken IGF-I but in which all known forms of IGF-II react very poorly, (ii) a receptor assay for IGF-II in which all known forms of IGF-I react poorly, and (iii) a type-I IGF receptor assay in which mammalian IGF-I and IGF-II polypeptides are almost equivalent. No IGF-II-like activity was detected. Three peaks of IGF-I-like activity were detected by IGF-I immunoassay and type-I IGF receptor assay. The major peak of activity was similar in molecular size to human IGF-binding protein-3, 45–55 kDa ('large IGF'), and a minor peak of activity which was similar in size to mammalian IGFs, 7·5 kDa. A third peak of activity was observed eluting at a time which indicates that it is a smaller molecule than any previously described IGF. The large IGF was temperature-sensitive, but was not a binding protein for 125I-labelled human IGF-I (hIGF-I). This material therefore was able to bind to anti-hIGF-I antibodies and to human type-I IGF receptors, and may represent the fish equivalent of mammalian prepro-IGFs. The two smallest forms of IGF activity identified by IGF-I radioimmunoassay and type-I radioreceptor assay following acidic size-exclusion chromatography were able to stimulate protein synthesis by L-6 myoblasts in culture, although large IGF did not. When fresh (but not frozen and thawed) golden perch serum was incubated with 125I-labelled hIGF-I and then fractionated by size-exclusion liquid chromatography at pH 7·4 through Sephadex G-100, the radioactivity became associated with a complex, intermediate in size between free IGF-I and the major IGF-binding protein in human serum. The association of 125I-labelled hIGF-I with the complex was inhibited by the presence of unlabelled hIGF-I in the incubation. These studies show that receptor-active, immunoreactive and bioactive IGF-I-like activity is present in golden perch serum, and demonstrate the presence of an IGF-I-binding factor in this species. Journal of Endocrinology (1993) 136, 191–198


1988 ◽  
Vol 118 (4) ◽  
pp. 513-520 ◽  
Author(s):  
C. A. Conover ◽  
P. Misra ◽  
R. L. Hintz ◽  
R. G. Rosenfeld

Abstract. Specific, high affinity binding of 125I-IGF-I to the type I IGF receptor on human fibroblast monolayers was not altered by varying feeding schedules, serum lots, washing procedures, or incubation times and temperatures. However, markedly different competitive binding curves were obtained when different iodinated IGF-I preparations were used. Five of six radioligands bound preferentially to the type I IGF receptor on human fibroblast monolayers, with 50% displacement at 4–8 μg/l unlabelled IGF-I; with one radioligand a paradoxical 20–200% increase in 125I-IGF-I binding was observed at low concentrations of unlabelled IGF-I, while concentrations as high as 100 μg/l IGF-I failed to displace this radioligand. The latter binding pattern cannot be accounted for by 125I-IGF-I binding to the type II IGF receptor. These data indicate that various radioligands may have preferential affinities for different IGF-I binding sites on human fibroblast monolayers.


1993 ◽  
Vol 48 (1-2) ◽  
pp. 9-20 ◽  
Author(s):  
Hiromi Ohashi ◽  
Kenneth M. Rosen ◽  
Fannie E. Smith ◽  
Lydia Villa-Komaroff ◽  
Ramesh C. Nayak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document