The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney

2001 ◽  
Vol 281 (1) ◽  
pp. R91-R97 ◽  
Author(s):  
Masao Kakoki ◽  
Ai-Ping Zou ◽  
David L. Mattson

The role of nitric oxide (NO) produced by NO synthase 1 (NOS1) in the renal vasculature remains undetermined. In the present study, we investigated the influence of systemic inhibition of NOS1 by intravenous administration of N ω-propyl-l-arginine (l-NPA; 1 mg · kg−1 · h−1) and N 5-(1-imino-3-butenyl)-l-ornithine (v-NIO; 1 mg · kg−1 · h−1), highly selective NOS1 inhibitors, on renal cortical and medullary blood flow and interstitial NO concentration in Sprague-Dawley rats. Arterial blood pressure was significantly decreased by administration of both NOS1-selective inhibitors (−11 ± 1 mmHg with l-NPA and −7 ± 1 mmHg with v-NIO; n = 9/group). Laser-Doppler flowmetry experiments demonstrated that blood flow in the renal cortex and medulla was not significantly altered following administration of either NOS1-selective inhibitor. In contrast, the renal interstitial level of NO assessed by an in vivo microdialysis oxyhemoglobin-trapping technique was significantly decreased in both the renal cortex (by 36–42%) and medulla (by 32–40%) following administration of l-NPA ( n = 8) or v-NIO ( n = 8). Subsequent infusion of the nonspecific NOS inhibitor N ω-nitro-l-arginine methyl ester (l-NAME; 50 mg · kg−1 · h−1) to rats pretreated with either of the NOS1-selective inhibitors significantly increased mean arterial pressure by 38–45 mmHg and significantly decreased cortical (25–29%) and medullary (37–43%) blood flow. In addition, l-NAME further decreased NO in the renal cortex (73–77%) and medulla (62–71%). To determine if a 40% decrease in NO could alter renal blood flow, a lower dose ofl-NAME (5 mg · kg−1 · h−1; n = 8) was administered to a separate group of rats. The low dose of l-NAME reduced interstitial NO (cortex 39%, medulla 38%) and significantly decreased blood flow (cortex 23–24%, medulla 31–33%). These results suggest that NOS1 does not regulate basal blood flow in the renal cortex or medulla, despite the observation that a considerable portion of NO in the renal interstitial space appears to be produced by NOS1.

2000 ◽  
Vol 83 (4) ◽  
pp. 2022-2029 ◽  
Author(s):  
Ikram M. Elayan ◽  
Milton J. Axley ◽  
Paruchuri V. Prasad ◽  
Stephen T. Ahlers ◽  
Charles R. Auker

Oxygen (O2) at high pressures acts as a neurotoxic agent leading to convulsions. The mechanism of this neurotoxicity is not known; however, oxygen free radicals and nitric oxide (NO) have been suggested as contributors. This study was designed to follow the formation of oxygen free radicals and NO in the rat brain under hyperbaric oxygen (HBO) conditions using in vivo microdialysis. Male Sprague-Dawley rats were exposed to 100% O2 at a pressure of 3 atm absolute for 2 h. The formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) as a result of perfusing sodium salicylate was followed as an indicator for the formation of hydroxyl radicals. 2,3-DHBA levels in hippocampal and striatal dialysates of animals exposed to HBO conditions were not significantly different from controls. However, rats treated under the same conditions showed a six- and fourfold increase in nitrite/nitrate, break down products of NO decomposition, in hippocampal and striatal dialysates, respectively. This increase was completely blocked by the nitric oxide synthase (NOS) inhibitor l-nitroarginine methyl ester (l-NAME). Using neuronal NOS, we determined the NOS O2 K m to be 158 ± 28 (SD) mmHg, a value which suggests that production of NO by NOS would increase approximately four- to fivefold under hyperbaric O2 conditions, closely matching the measured increase in vivo. The increase in NO levels may be partially responsible for some of the detrimental effects of HBO conditions.


1998 ◽  
Vol 107 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Thomas Runer ◽  
Sven Lindberg

In an animal model, nitric oxide (NO) has been shown to increase mucociliary activity in vivo and ciliary beat frequency in vitro. The aim of the present study was to investigate the effects of NO on blood flow and mucociliary activity in the human nose. The concentration of NO in nasal air was measured with a chemiluminescence technique after nebulizing the NO donor sodium nitroprusside (SNP) at a dose of 3.0 mg into the nose in six volunteers, and was found to increase by 50.1% ± 10.0% (mean ± SEM; p <.001) after the SNP challenge. Blood flow measured by laser Doppler flowmetry increased by 67.3% ± 15.5% (p <.05) after challenge with SNP at 1.0 mg, and by 75.4% ± 18.5% at 3.0 mg (p <.01; n = 6). The higher dose, which produced no subjective side effects, was then used in the mucociliary experiments. The maximum increase in nasal mucociliary activity was 57.2% ± 6.7% at 3.0 mg of SNP (n = 5). The findings support the view that NO regulates mucociliary activity and blood flow in the human nasal mucosa.


1999 ◽  
Vol 277 (5) ◽  
pp. F797-F804 ◽  
Author(s):  
So Yeon Chin ◽  
Kailash N. Pandey ◽  
Shang-Jin Shi ◽  
Hiroyuki Kobori ◽  
Carol Moreno ◽  
...  

We have previously demonstrated that nitric oxide (NO) exerts a greater modulatory influence on renal cortical blood flow in ANG II-infused hypertensive rats compared with normotensive rats. In the present study, we determined nitric oxide synthase (NOS) activities and protein levels in the renal cortex and medulla of normotensive and ANG II-infused hypertensive rats. Enzyme activity was determined by measuring the rate of formation ofl-[14C]citrulline froml-[14C]arginine. Western blot analysis was performed to determine the regional expression of endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) isoforms in the renal cortex and medulla of control and ANG II-infused rats. Male Sprague-Dawley rats were prepared by the infusion of ANG II at a rate of 65 ng/min via osmotic minipumps implanted subcutaneously for 13 days and compared with sham-operated rats. Systolic arterial pressures were 127 ± 2 and 182 ± 3 mmHg in control ( n = 13) and ANG II-infused rats ( n = 13), respectively. The Ca2+-dependent NOS activity, expressed as picomoles of citrulline formed per minute per gram wet weight, was higher in the renal cortex of ANG II-infused rats (91 ± 11) than in control rats (42 ± 12). Likewise, both eNOS and nNOS were markedly elevated in the renal cortex of the ANG II-treated rats. In both groups of rats, Ca2+-dependent NOS activity was higher in the renal medulla than in the cortex; however, no differences in medullary NOS activity were observed between the groups. Also, no differences in medullary eNOS levels were observed between the groups; however, medullary nNOS was decreased by 45% in the ANG II-infused rats. For the Ca2+-independent NOS activities, the renal cortex exhibited a greater activity in the control rats (174 ± 23) than in ANG II-infused rats (101 ± 10). Similarly, cortical iNOS was greater by 47% in the control rats than in ANG II-treated rats. No differences in the activity were found for the renal medulla between the groups. There was no detectable signal for iNOS in the renal medulla for both groups. These data indicate that there is a differential distribution of NOS activity, with the Ca2+-dependent activity and protein expression higher in the renal cortex of ANG II-infused rats compared with control rats, and support the hypothesis that increased constitutive NOS activity exerts a protective effect in ANG II-induced hypertension to maintain adequate renal cortical blood flow.


2009 ◽  
Vol 107 (4) ◽  
pp. 1037-1050 ◽  
Author(s):  
Elena Grossini ◽  
Claudio Molinari ◽  
David A. S. G. Mary ◽  
Francesca Uberti ◽  
Philippe Primo Caimmi ◽  
...  

Systemic intermedin (IMD)1–47 administration has been reported to result in vasodilation and marked hypotension through calcitonin-related receptor complexes. However, its effects on the coronary circulation and the heart have not been examined in vivo. The present study was therefore planned to determine the primary in vivo effect of IMD1–47 on coronary blood flow and cardiac function and the involvement of the autonomic nervous system and nitric oxide (NO). In 35 anesthetized pigs, IMD1–47, infused into the left anterior descending coronary artery at doses of 87.2 pmol/min, at constant heart rate and arterial blood pressure, augmented coronary blood flow and cardiac function. These responses were graded in a further five pigs by increasing the infused dose of IMD1–47 between 0.81 and 204.1 pmol/min. In the 35 pigs, the blockade of cholinergic receptors (intravenous atropine, 5 pigs), α-adrenoceptors (intravenous phentolamine, 5 pigs), and β1-adrenoceptors (intravenous atenolol, 5 pigs) did not abolish the cardiac response to IMD1–47, the effects of which were prevented by blockade of β2-adrenoceptors (intravenous butoxamine, 5 pigs), NO synthase (intracoronary Nω-nitro-l-arginine methyl ester, 5 pigs), and calcitonin-related receptors (intracoronary CGRP8–37/AM22–52, 10 pigs). In porcine coronary endothelial cells, IMD1–47 induced the phosphorylation of endothelial NO synthase and NO production through cAMP signaling leading to ERK, Akt, and p38 activation, which was prevented by the inhibition of β2-adrenoceptors, calcitonin-related receptor complexes, and K+ channels. In conclusion, IMD1–47 primarily augmented coronary blood flow and cardiac function through the involvement of calcitonin-related receptor complexes and β2-adrenoreceptor-mediated NO release. The intracellular signaling involved cAMP-dependent activation of kinases and the opening of K+ channels.


2009 ◽  
Vol 87 (5) ◽  
pp. 379-386 ◽  
Author(s):  
Theodor Petrov

Endothelin 1 (ET-1) is one of the most powerful vasoconstrictors in the brain. Its expression is upregulated after traumatic brain injury (TBI) and is a major factor in the ensuing hypoperfusion. Attenuation of ET-1 effects has been mainly achieved by blockade of its receptors. The result of a direct blockade of ET-1 mRNA synthesis is not known. We used the Marmarou’s model to inflict injury to male Sprague–Dawley rats injected with antisense ET-1 oligodeoxynucleotides (ODNs) before injury. Laser Doppler flowmetry in noninjured rats (2 groups, i.e., untreated and animals that received cODNs) revealed a constant cerebral blood flow of approximately 14 mL·min–1·100 g–1, whereas the values from injured animals pretreated with control ODNs (cODNs) or from animals subjected to TBI alone were approximately 8.0 mL·min–1·100 g–1 during the 18–48 h time period post-TBI. After antisense ET-1 ODNs pretreatment, however, cerebral blood flow in injured animals was approximately 17 mL·min–1·100 g–1 during the 6–48 h time period. Antisense ET-1 ODNs-treated animals also had 19%–29% larger microvessel cross-sectional area and approximately one-third less ET-1 immunoreactivity in the 50–75% range after injury than did cODNs-treated animals after TBI. The results indicate that this direct in vivo approach is an effective therapeutic intervention for the restoration of cerebral blood flow after TBI.


2007 ◽  
Vol 293 (6) ◽  
pp. G1281-G1287 ◽  
Author(s):  
Joel Petersson ◽  
Olof Schreiber ◽  
Andreas Steege ◽  
Andreas Patzak ◽  
Anna Hellsten ◽  
...  

The role of NO in inflammatory bowel disease is controversial. Studies indicate that endothelial nitric oxide synthase (eNOS) might be involved in protecting the mucosa against colonic inflammation. The aim of this study was to investigate the involvement of nitric oxide (NO) in regulating colonic mucosal blood flow in two different colitis models in rats. In anesthetized control and colitic rats, the distal colon was exteriorized and the mucosa visualized. Blood flow (laser-Doppler flowmetry) and arterial blood pressure were continuously monitored throughout the experiments, and vascular resistance was calculated. Trinitrobenzene sulfonic acid (TNBS) or dextran sulfate sodium (DSS) was used to induce colitis. All groups were given the NOS inhibitor Nω-nitro-l-arginine (l-NNA) or the inducible NOS (iNOS) inhibitor l- N6-(1-iminoethyl)-lysine (l-NIL). iNOS, eNOS, and neuronal NOS (nNOS) mRNA in colonic samples were investigated with real-time RT-PCR. Before NOS inhibition, colonic mucosal blood flow, expressed as perfusion units, was higher in both colitis models compared with the controls. The blood flow was reduced in the TNBS- and DSS-treated rats during l-NNA administration but was not altered in the control group. Vascular resistance increased more in the TNBS- and DSS-treated rats than in the control rats, indicating a higher level of vasodilating NO in the colitis models. l-NIL did not alter blood pressure or blood flow in any of the groups. iNOS and eNOS mRNA increased in both colitis models, whereas nNOS remained at the control level. TNBS- and DSS-induced colitis results in increased colonic mucosal blood flow, most probably due to increased eNOS activity.


1995 ◽  
Vol 268 (2) ◽  
pp. H569-H575 ◽  
Author(s):  
S. C. Jones ◽  
J. L. Williams ◽  
M. Shea ◽  
K. A. Easley ◽  
D. Wei

Cycling of various cerebral metabolic substances, arterial vascular diameter, and flow has been noted by many workers at a frequency near 0.1 Hz. Suspicion that this phenomenon is dependent on the type of anesthesia led us to investigate the occurrence of cerebral blood flow (CBF) cycling with different anesthetics. Fifteen Sprague-Dawley rats were anesthetized with either pentobarbital (n = 5, 40–50 mg/kg), alpha-chloralose (n = 5, 60 mg/kg), or halothane (n = 5, 1–0.5%). Body temperature was maintained at 37 degrees C. Femoral arterial and venous catheters were placed, and a tracheotomy was performed, permitting artificial ventilation with 30% O2–70% N2. A closed cranial window was formed over a 3-mm diameter craniotomy. Mean arterial pressure (MABP), arterial partial pressures of CO2 and O2 (PaCO2 and PaO2), and pH were controlled and stabilized at normal values. CBF was determined using laser Doppler flowmetry. To induce cycling, MABP was transiently and repeatedly lowered by exsanguination. Fast Fourier analysis of selected 64-s flow recordings (n = 38) was performed. CBF cycling was observed, independent of the type of anesthesia, in all animals. In 36 epochs, cycling was induced when MABP was reduced to a mean pressure of 65 +/- 1.5 mmHg. The mean frequency and amplitude were 0.094 +/- 0.003 Hz and 6.6 +/- 0.5%, respectively. Cycling occurred without blood withdrawal in two epochs. With the use of the blood-withdrawal epochs (n = 36), all three anesthetics shared a common linear slope between amplitude and blood pressure (P < 0.02) and blood pressure change (P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 110 (5) ◽  
pp. 996-1002 ◽  
Author(s):  
Thomas Westermaier ◽  
Alina Jauss ◽  
Jörg Eriskat ◽  
Ekkehard Kunze ◽  
Klaus Roosen

Object Immediate vasoconstriction after subarachnoid hemorrhage (SAH) has been observed in a number of experimental studies. However, it has not yet been examined which pattern this acute-type vascular reaction follows and whether it correlates with the intensity of SAH. It was the purpose of the present study to vary the extent of SAH using the endovascular filament model of SAH with increasing filament sizes and to compare the course of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and regional cerebral blood flow (rCBF). Methods Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. Subarachnoid hemorrhage was induced using a 3-0, 4-0, or 5-0 Prolene monofilament (8 rats in each group). Eight animals served as controls. Bilateral rCBF (laser Doppler flowmetry), mean arterial blood pressure, and ICP were continuously monitored. Thereafter, the rats were allowed to wake up. Twenty-four hours later, the animals were killed, their brains were removed, and the extent of SAH was determined. Results After induction of SAH, ICP steeply increased while CPP and rCBF rapidly declined in all groups. With increasing size of the filament, the increase of ICP and the decrease of CPP were more pronounced. However, the decline of rCBF exceeded the decline of CPP in all SAH groups. In a number of animals with minor SAH, an oscillating pattern of rCBF was observed during induction of SAH and during early recovery. Conclusions The disparity between the decline and recovery of CPP and rCBF suggests that acute vasoconstriction occurs even in SAH of a minor extent. Acute vasoconstriction may contribute significantly to a perfusion deficit in the acute stage after SAH. The oscillating pattern of rCBF in the period of early recovery after SAH resembles the pattern of synchronized vasomotion, which has been thoroughly examined for other vascular territories and may yield therapeutic potential.


1996 ◽  
Vol 270 (4) ◽  
pp. H1350-H1354 ◽  
Author(s):  
K. Toyoda ◽  
K. Fujii ◽  
S. Ibayashi ◽  
S. Sadoshima ◽  
M. Fujishima

Cerebral arterioles have been regarded as the primary sites of autoregulatory responses, whereas the role of large arteries in the cerebral autoregulation is poorly understood. The goal of this study was to determine in vivo whether the basilar artery and its primary branches act as resistance vessels under hypotensive conditions by simultaneously measuring their diameters and local brain stem blood flow with laser-Doppler flowmetry. In 10 anesthetized rats, blood flow to the brain stem was well maintained during stepwise hemorrhagic hypotension when mean arterial blood pressure fell from 116 +/- 3 to 50 mmHg and decreased gradually between 50 and 30 mmHg. Diameter of the basilar artery (n = 10) and its large branches (n = 22), measured through an open cranial window, increased by 10% from the baseline value at 50 mmHg and reached their maximum at 30 mmHg (314 +/- 9 from 244 +/- 6 mum, and 149 +/- 4 from 117 +/- 3 mum, respectively). Small branches (n = 15) dilated to a larger extent compared with the larger arteries throughout hypotension and reached the maximum at 30 mmHg (69 +/- 3 from 48 +/- 2 mum). Below 30 mmHg, there was a steep fall in blood flow and reduction in diameter of all-sized arteries. Thus small vessels contribute to reductions in cerebrovascular resistance throughout the entire autoregulatory-range in the brain stem circulation. Large arteries, such as the basilar artery and its branches, also contribute to reductions in cerebrovascular resistance around the lower limits of cerebral blood flow autoregulation and may thus play a significant role in maintaining blood flow to the brain stem during severe systemic hypotension.


1999 ◽  
Vol 276 (5) ◽  
pp. F700-F710 ◽  
Author(s):  
Max Salomonsson ◽  
William J. Arendshorst

This study provides new information about the relative importance of Ca2+ mobilization and entry in the renal vascular response to adrenoceptor activation. We measured renal blood flow (RBF) in Sprague-Dawley rats in vivo using electromagnetic flowmetry. We measured intracellular free Ca2+ concentration ([Ca2+]i) in isolated afferent arterioles utilizing ratiometric photometry of fura-2 fluorescence. Renal arterial injection of NE produced a transient decrease in RBF. The response was attenuated, in a dose-dependent manner, up to ∼50% by nifedipine, an antagonist of L-type Ca2+ entry channels. Inhibition of Ca2+ mobilization by 3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester (TMB-8) inhibited the renal vascular effects of NE in a dose-dependent manner, with maximal blockade of ∼80%. No additional attenuation was observed when nifedipine and TMB-8 were administered together. In microdissected afferent arterioles, norepinephrine (NE; 10−6 M) elicited an immediate square-shaped increase in [Ca2+]i, from 110 to 240 nM. This in vitro response was blocked by nifedipine (10−6 M) and TMB-8 (10−5 M) to a degree similar to that of the in vivo experiments. A nominally calcium-free solution blocked 80–90% of the [Ca2+]iresponse to NE. The increased [Ca2+]ielicited by depolarization with medium containing 50 mM KCl was totally blocked by nifedipine. In contrast, TMB-8 had no effect. Our results indicate that both Ca2+ entry and mobilization play important roles in the renal vascular Ca2+ and contractile response to adrenoceptor activation. The entry and mobilization mechanisms activated by NE may interact. That a calcium-free solution caused a larger inhibition of the NE effects on afferent arterioles than nifedipine suggests more than one Ca2+ entry pathway.


Sign in / Sign up

Export Citation Format

Share Document