Interleukin-6 stimulates α-MG uptake in renal proximal tubule cells: involvement of STAT3, PI3K/Akt, MAPKs, and NF-κB

2007 ◽  
Vol 293 (4) ◽  
pp. F1036-F1046 ◽  
Author(s):  
Yu Jin Lee ◽  
Jung Sun Heo ◽  
Han Na Suh ◽  
Min Young Lee ◽  
Ho Jae Han

Recent studies have shown that interleukin 6 (IL-6) acts on the cellular proliferation-activating transduction signals during cellular regeneration. Therefore, this study examined the effect of IL-6 on the activation of Na+/glucose cotransporters (SGLTs) and its related signaling pathways in primary cultured renal proximal tubule cells (PTCs). IL-6 increased the level of α-methyl-d-[14C]glucopyranoside (α-MG) uptake in time- and dose-dependent manners. IL-6 also increased SGLT1 plus SGLT2 mRNA and protein expression level. The IL-6 receptors (IL-6Rα and gp130) were expressed in PTCs. In addition, genistein and herbimycin A completely blocked the IL-6-induced increases in α-MG uptake and the protein expression level of SGLTs. On the other hand, IL-6 increased the level of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate-sensitive cellular reactive oxygen species (ROS), and IL-6-induced increases in α-MG uptake and the protein expression level of SGLTs were blocked by ascorbic acid or taurine (antioxidants). IL-6 also increased the phosphorylation of signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) in a time-dependent manner. A pretreatment with STAT3 inhibitor LY 294002, an Akt inhibitor, or MAPK inhibitors significantly blocked the IL-6-induced increase in α-MG uptake. In addition, IL-6 increased the level of nuclear factor-κB (NF-κB) phosphorylation. A pretreatment with SN50 or BAY 11-7082 also blocked the IL-6-induced increase in α-MG uptake. In conclusion, IL-6 increases the SGLT activity through ROS, and its action in renal PTCs is associated with the STAT3, PI3K/Akt, MAPKs, and NF-κB signaling pathways.

2009 ◽  
Vol 296 (2) ◽  
pp. F355-F361 ◽  
Author(s):  
Rochelle Cunningham ◽  
Rajatsubhra Biswas ◽  
Marc Brazie ◽  
Deborah Steplock ◽  
Shirish Shenolikar ◽  
...  

The present experiments were designed to detail factors regulating phosphate transport in cultured mouse proximal tubule cells by determining the response to parathyroid hormone (PTH), dopamine, and second messenger agonists and inhibitors. Both PTH and dopamine inhibited phosphate transport by over 30%. The inhibitory effect of PTH was completely abolished in the presence of chelerythrine, a PKC inhibitor, but not by Rp-cAMP, a PKA inhibitor. By contrast, both chelerythrine and Rp-cAMP blocked the inhibitory effect of dopamine. Chelerythrine inhibited PTH-mediated cAMP accumulation but also blocked the inhibitory effect of 8-bromo-cAMP on phosphate transport. On the other hand, Rp-cAMP had no effect on the ability of DOG, a PKC activator, to inhibit phosphate transport. PD98059, an inhibitor of MAPK, had no effect on PTH- or dopamine-mediated inhibition of sodium-phosphate cotransport. Finally, compared with 8-bromo-cAMP, 8-pCPT-2′- O-Me-cAMP, an activator of EPAC, had no effect on phosphate transport. These results outline significant differences in the signaling pathways utilized by PTH and dopamine to inhibit renal phosphate transport. Our results also suggest that activation of MAPK is not critically involved in PTH- or dopamine-mediated inhibition of phosphate transport in mouse renal proximal tubule cells in culture.


2004 ◽  
Vol 287 (4) ◽  
pp. C1058-C1066 ◽  
Author(s):  
Ho Jae Han ◽  
Min Jin Lim ◽  
Yun Jung Lee

Exposure of renal proximal tubule cells to oxalate may play an important role in cell proliferation, but the signaling pathways involved in this effect have not been elucidated. Thus the present study was performed to examine the effect of oxalate on 3H-labeled thymidine incorporation and its related signal pathway in primary cultured rabbit renal proximal tubule cells (PTCs). The effects of oxalate on [3H]thymidine incorporation, lactate dehydrogenase (LDH) release, Trypan blue exclusion, H2O2 release, activation of mitogen-activated protein kinases (MAPKs), and 3H-labeled arachidonic acid (AA) release were examined in primary cultured renal PTCs. Oxalate inhibited [3H]thymidine incorporation in a time- and dose-dependent manner. However, its analogs did not affect [3H]thymidine incorporation. Oxalate (1 mM) significantly increased H2O2 release, which was blocked by N-acetyl-l-cysteine (NAC) and catalase (antioxidants). Oxalate significantly increased p38 MAPK and stress-activated protein kinase (SAPK)/c-Jun NH2-terminal kinase (JNK) activity, not p44/42 MAPK. Oxalate stimulated [3H]AA release and translocation of cytosolic phospholipase A2 (cPLA2) from the cytosolic fraction to the membrane fraction. Indeed, oxalate significantly increased prostaglandin E2 (PGE2) production compared with control. Oxalate-induced inhibition of [3H]thymidine incorporation and increase of [3H]AA release were prevented by antioxidants (NAC), a p38 MAPK inhibitor (SB-203580), a SAPK/JNK inhibitor (SP-600125), or PLA2 inhibitors [mepacrine and arachidonyl trifluoromethyl ketone (AACOCF3)], but not by a p44/42 MAPK inhibitor (PD-98059). These findings suggest that oxalate inhibits renal PTC proliferation via oxidative stress, p38 MAPK/JNK, and cPLA2 signaling pathways.


2009 ◽  
Vol 296 (6) ◽  
pp. F1405-F1416 ◽  
Author(s):  
Yu Jin Lee ◽  
Han Na Suh ◽  
Ho Jae Han

Recent studies demonstrated that endoplasmic reticulum (ER) stress regulates glucose homeostasis and that ER stress preconditioning which induces an adaptive, protective unfolded protein response (UPR) offers cytoprotection against nephrotoxins. Thus the aim of the present study was to use renal proximal tubule cells (PTCs) to further elucidate the link between the BSA-induced ER stress and α-methyl-d-glucopyranoside (α-MG) uptake and to identify related signaling pathways. Among ER stress inducers such as high glucose, BSA, H2O2, or tumicamycin, BSA pretreatment ameliorated the reduction of Na+-glucose cotransporter (SGLT) expression and α-MG uptake by gentamicin or cyclosporine A. Immunofluorescence studies revealed that BSA (10 mg/ml) stimulated the expression of glucose-regulated protein 78 (GRP78), an ER stress biomarker. In addition, BSA increased levels of GRP78 protein expression and eukaryotic initiation factor 2α (eIF2α) phosphorylation in a time-dependent manner. Furthermore, transfection with a GRP78-specific small interfering RNA (siRNA) inhibited BSA-stimulated SGLT expression and α-MG uptake. In experiments designed to unravel the mechanisms underlying BSA-induced ER stress, BSA stimulated the production of cellular reactive oxygen species (ROS), and antioxidants such as ascorbic acid or N-acetylcysteine (NAC) blocked BSA-induced increases in GRP78 activation, eIF2α phosphorylation, SGLT expression, and α-MG uptake. Moreover, the cells upregulated peroxisome proliferator-activated receptor-γ (PPARγ) mRNA levels in response to BSA or troglitazone (a PPARγ agonist), but BSA was ineffective in the presence of GW9662 (a PPARγ antagonist). In addition, both BSA and troglitazone stimulated GRP78 and eIF2α activation, SGLT expression, and α-MG uptake, whereas GW9662 inhibited the effects of BSA. BSA also stimulated phosphorylation of JNK and NF-κB, and GW9662 or GRP78 siRNA attenuated this response. Moreover, SP600125 or SN50 effectively blocked SGLT expression and α-MG uptake in BSA- or PPARγ agonists (troglitazone or PGJ2)-treated PTCs. We conclude that BSA induces ER stress through ROS production and PPARγ activation, which subsequently activates JNK/NF-κB signaling to enhance glucose uptake in renal PTCs.


2005 ◽  
Vol 19 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Ho Jae Han ◽  
Min Jin Lim ◽  
Yun Jung Lee ◽  
Eun Jung Kim ◽  
Young Jin Jeon ◽  
...  

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Wei Yue ◽  
Peng Xu ◽  
John J Gildea ◽  
Robin A Felder

G protein-coupled receptor kinase 4 (GRK4) is a member of the GRK family which play critical role in regulation of the function of G protein-coupled receptors. Our previous studies have shown that GRK4 not only plays a role in regulating sodium excretion in renal proximal tubule cells but also acts as a stimulator on proliferation of breast cancer cells. Uncontrolled proliferation is a characteristics of cancer cells and GRK4 is upregulated in breast cancer cells. We hypothesized that expression of GRK4 may be regulated differently in cancer and non-cancer cells. To test this hypothesis, expression of GRK4 in response to serum was compared in breast cancer cells and renal proximal tubule cells by Western analysis. In three breast cancer cell lines serum withdrawal caused rapid reduction in the levels of GRK4 which occurred as early as 15 min. GRK4 levels correlated with the concentrations of serum added to the culture media. To determine if growth factors were a critical element for maintaining GRK4 levels in the cells, EGF (10-20 ng/ml) was added to serum free medium for 24 h. There was no increase in GRK4 levels in the cells treated with EGF compared with the serum starvation control. Similarly, serum withdrawal (16 h) led to 40-80% decrease of GRK4 levels in renal proximal tubule cells even in the presence of EFG supplement. Serum feeding for 30 min after starvation dramatically increased the levels of GRK4 in both breast cancer cells and RPTC which exceeded the steady state levels. This rapid recovery of GRK4 protein do not need de novo protein synthesis because pretreatment of the cells with protein synthesis inhibitor, cycloheximide (10 μg/ml, 24 h), did not prevent this event. Expression of GRK2, another member of the GRK family, was not affected by serum starvation. Our results have shown that GRK4 is very sensitive to serum concentration in breast cancer cells as well as in RPTC. Preliminary studies suggest that rapid protein degradation rather than shutting down the protein synthesis plays a major role in this kind of GRK4 regulation. The biological significance of serum regulation of GRK4 in cancer and non-cancerous cells needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document