Differential regulation of VEGF by TGF-β and hypoxia in rat proximal tubular cells

2004 ◽  
Vol 287 (4) ◽  
pp. F658-F664 ◽  
Author(s):  
Takahiko Nakagawa ◽  
Hui Y. Lan ◽  
Hong J. Zhu ◽  
Duk-Hee Kang ◽  
George F. Schreiner ◽  
...  

VEGF expression by proximal tubular epithelial cells may play a critical role in maintaining peritubular capillary endothelium in renal disease. Two major processes involved in renal injury include hypoxia (from vasoconstriction or vascular injury) and transforming growth factor (TGF)-β-dependent fibrosis, both of which are known to stimulate VEGF. Because the TGF-β/Smad pathway is activated in hypoxia, we tested the hypothesis that the induction of VEGF in hypoxia could be partially dependent on TGF-β. Rat proximal tubular (NRK52E) cells treated with TGF-β under normoxic conditions secreted VEGF at 24 h, and this was significantly reduced by blocking Smad activation by overexpressing the inhibitory Smad7 or by blocking p38 and ERK1/2 MAP kinase activation or protein kinase C activation with specific inhibitors. With acute hypoxia, rat proximal tubular cells also express VEGF mRNA and protein as well as TGF-β. However, the induction of VEGF occurs before synthesis of TGF-β and is not blocked by either a TGF-β antagonist, by Smad7 overexpression, or by blockage of ERK1/2, whereas induction is blocked by PKC inhibition or partially blocked by a p38 inhibitor. Finally, the addition of TGF-β with hypoxia results in significantly more VEGF expression than either stimulation alone. Thus TGF-β and hypoxia act via additive/synergistic but distinct pathways to stimulate VEGF in proximal tubular cells, a finding that may be important in understanding how VEGF is stimulated in renal disease.

1996 ◽  
Vol 271 (1) ◽  
pp. F120-F125 ◽  
Author(s):  
G. S. Kuncio ◽  
R. Alvarez ◽  
S. Li ◽  
P. D. Killen ◽  
E. G. Neilson

We have examined the expression of the alpha 1(IV) collagen gene in murine proximal tubular cells (MCT) to better understand how it is regulated in parenchymal cells. Transcriptional activity was examined using luciferase reporters driven by the alpha 1(IV) promoter and varying lengths of 5'-flanking sequences. The minimal bidirectional promoter showed low intrinsic activity in MCT cells, but addition of upstream sequences increased luciferase expression. Maximal activity resided within the first 1,200 bp upstream. A minigene construct was generated by placing a portion of the alpha 1(IV) first intron downstream from the promoter region. The intronic sequences significantly decreased activity of the promoter in MCT cells and 3T3 fibroblasts but greatly enhanced expression in murine parietal yolk sac (PYS) endodermal cells. Addition of transforming growth factor-beta (TGF-beta) to MCT cultures elevated the levels of secreted type IV collagen. Treatment of either transiently or stably transfected MCT cells with TGF-beta produced an increase in the levels of expression of all of the reporters tested. These data support the hypothesis that cell-specific regulation of alpha 1(IV) collagen is dependent upon downstream sequences, which act to decrease the expression of type IV collagen in tubular epithelium. The activity of the alpha 1(IV) collagen gene in proximal tubular cells is increased by TGF-beta, which acts on the domain(s) embedded within the intergenic bidirectional promoter.


2008 ◽  
Vol 73 (6) ◽  
pp. 724-732 ◽  
Author(s):  
D.J. Fraser ◽  
A.O. Phillips ◽  
X. Zhang ◽  
C.R. van Roeyen ◽  
P. Muehlenberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document