scholarly journals Mouse model of ischemic acute kidney injury: technical notes and tricks

2012 ◽  
Vol 303 (11) ◽  
pp. F1487-F1494 ◽  
Author(s):  
Qingqing Wei ◽  
Zheng Dong

Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.

2019 ◽  
Vol 17 ◽  
pp. 205873921985980 ◽  
Author(s):  
Xueyuan Yu ◽  
Xiumei Zhang ◽  
Zhao Hu

The aim of this study was to investigate the role of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 2 (NLRP2) in kidney ischemia/reperfusion injury. A mouse model of acute kidney ischemia/reperfusion injury was established to conduct in vivo experiments. Oxygen–glucose deprivation (OGD) and cobalt chloride treatment of the HK-2 and glomerular endothelial cell (GENC) kidney cell lines were performed for the in vitro study. Reverse transcription–quantitative polymerase chain reaction, western blotting, and immunohistochemical staining were used to analyze NLRP2 expression levels. Knockdown of NLRP2 in cells was also performed, and cell apoptosis was detected using flow cytometry. NLRP2 was expressed in normal kidney tissues; however, its expression was significantly increased in the acute kidney injury model and in OGD-treated cells. Conversely, knockdown of NLRP2 reduced apoptosis of cells. These results suggested that NLRP2 was involved in kidney damage and may be an important target for treatment of acute kidney injury.


2019 ◽  
Vol 317 (3) ◽  
pp. F616-F622 ◽  
Author(s):  
Jin Wei ◽  
Yingliang Wang ◽  
Jie Zhang ◽  
Lei Wang ◽  
Liying Fu ◽  
...  

Transplanted kidneys usually experience several episodes of ischemia, including cold ischemia during allograft storage in preservation solution. However, previous studies focusing on cold renal ischemia were only carried out in vitro or ex vivo. In the present study, we developed and characterized an in vivo mouse model of renal ischemia-reperfusion injury (IRI) induced exclusively by cold ischemia. C57BL/6 mice underwent right kidney nephrectomy, and the left kidney was kept cool with circulating cold saline in a kidney cup, while body temperature was maintained at 37°C. We clamped the renal pedicle and flushed out the blood inside the kidney with cold saline via an opening on the renal vein. The severity of renal IRI was examined with different ischemic durations. We found that the mice with <2 h of cold ischemia exhibited no significant changes in renal function or histopathology; animals with 3 or 4 h of cold ischemia developed into mild to moderate acute kidney injury with characteristic features, including the elevation in plasma creatinine concentration and reduction in glomerular filtration rate and tubular necrosis, followed by a subsequent recovery. However, mice with 5 h of cold ischemia died in a few days with severe acute kidney injury. In summary, we generated a mouse model of renal IRI induced exclusively by cold ischemia, which mimics graft cold storage in preservation solution, and renal function can be evaluated in vivo.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yifei Ren ◽  
Ying Chen ◽  
Xizi Zheng ◽  
Hui Wang ◽  
Xin Kang ◽  
...  

Abstract Background Acute kidney injury (AKI) is a common clinical disease with complex pathophysiology and limited therapeutic choices. This prompts the need for novel therapy targeting multiple aspects of this disease. Human amnion epithelial cell (hAEC) is an ideal stem cell source. Increasing evidence suggests that exosomes may act as critical cell–cell communicators. Accordingly, we assessed the therapeutic potential of hAECs and their derived exosomes (hAECs-EXO) in ischemia reperfusion mouse model of AKI and explored the underlying mechanisms. Methods The hAECs were primary cultured, and hAECs-EXO were isolated and characterized. An ischemic-reperfusion injury-induced AKI (IRI-AKI) mouse model was established to mimic clinical ischemic kidney injury with different disease severity. Mouse blood creatinine level was used to assess renal function, and kidney specimens were processed to detect cell proliferation, apoptosis, and capillary density. Macrophage infiltration was analyzed by flow cytometry. hAEC-derived exosomes (hAECs-EXO) were used to treat hypoxia-reoxygenation (H/R) injured HK-2 cells and mouse bone marrow-derived macrophages to evaluate their protective effect in vitro. Furthermore, hAECs-EXO were subjected to liquid chromatography-tandem mass spectrometry for proteomic profiling. Results We found that systematically administered hAECs could improve mortality and renal function in IRI-AKI mice, decrease the number of apoptotic cells, prevent peritubular capillary loss, and modulate kidney local immune response. However, hAECs showed very low kidney tissue integration. Exosomes isolated from hAECs recapitulated the renal protective effects of their source cells. In vitro, hAECs-EXO protected HK-2 cells from H/R injury-induced apoptosis and promoted bone marrow-derived macrophage polarization toward M2 phenotype. Proteomic analysis on hAECs-EXO revealed proteins involved in extracellular matrix organization, growth factor signaling pathways, cytokine production, and immunomodulation. These findings demonstrated that paracrine of exosomes might be the key mechanism of hAECs in alleviating renal ischemia reperfusion injury. Conclusions We reported hAECs could improve survival and ameliorate renal injury in mice with IRI-AKI. The anti-apoptotic, pro-angiogenetic, and immunomodulatory capabilities of hAECs are at least partially, through paracrine pathways. hAECs-EXO might be a promising clinical therapeutic tool, overcoming the weaknesses and risks associated with the use of native stem cells, for patients with AKI.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93297 ◽  
Author(s):  
Melissa A. Bellinger ◽  
James S. Bean ◽  
Melissa A. Rader ◽  
Kathleen M. Heinz-Taheny ◽  
Jairo S. Nunes ◽  
...  

2017 ◽  
Vol 114 (47) ◽  
pp. 12608-12613 ◽  
Author(s):  
Bing-Qing Deng ◽  
Ying Luo ◽  
Xin Kang ◽  
Chang-Bin Li ◽  
Christophe Morisseau ◽  
...  

Acute kidney injury (AKI) causes severe morbidity and mortality for which new therapeutic strategies are needed. Docosahexaenoic acid (DHA), arachidonic acid (ARA), and their metabolites have various effects in kidney injury, but their molecular mechanisms are largely unknown. Here, we report that 14 (15)-epoxyeicosatrienoic acid [14 (15)-EET] and 19 (20)-epoxydocosapentaenoic acid [19 (20)-EDP], the major epoxide metabolites of ARA and DHA, respectively, have contradictory effects on kidney injury in a murine model of ischemia/reperfusion (I/R)-caused AKI. Specifically, 14 (15)-EET mitigated while 19 (20)-EDP exacerbated I/R kidney injury. Manipulation of the endogenous 19 (20)-EDP or 14 (15)-EET by alteration of their degradation or biosynthesis with selective inhibitors resulted in anticipated effects. These observations are supported by renal histological analysis, plasma levels of creatinine and urea nitrogen, and renal NGAL. The 14 (15)-EET significantly reversed the I/R-caused reduction in glycogen synthase kinase 3β (GSK3β) phosphorylation in murine kidney, dose-dependently inhibited the hypoxia/reoxygenation (H/R)-caused apoptosis of murine renal tubular epithelial cells (mRTECs), and reversed the H/R-caused reduction in GSK3β phosphorylation in mRTECs. In contrast, 19 (20)-EDP dose-dependently promoted H/R-caused apoptosis and worsened the reduction in GSK3β phosphorylation in mRTECs. In addition, 19 (20)-EDP was more metabolically stable than 14 (15)-EET in vivo and in vitro. Overall, these epoxide metabolites of ARA and DHA function conversely in I/R-AKI, possibly through their largely different metabolic stability and their opposite effects in modulation of H/R-caused RTEC apoptosis and GSK3β phosphorylation. This study provides AKI patients with promising therapeutic strategies and clinical cautions.


2020 ◽  
Author(s):  
Yifei Ren ◽  
Ying Chen ◽  
Xizi Zheng ◽  
Hui Wang ◽  
Xin Kang ◽  
...  

Abstract Background: Acute kidney injury (AKI) is a common clinical disease with complex pathophysiology and very limited therapeutic choices. This prompts the need for novel therapy targeting multiple aspects of this disease. Human amnion epithelial cells (hAECs) are ideal alternative stem cell source for regenerative medicine. Increasing evidence suggests that hAEC-derived exosomes (hAECs-EXO) may act as novel cell–cell communicators. Accordingly, we assessed the therapeutic potential of hAECs in ischemia reperfusion mouse model of AKI and explored the underlying mechanisms.Methods: The hAECs were primary cultured and hAECs-EXO were isolated and characterized. An ischemic renal injury mouse model was established to mimic different severity of the kidney injury. Mouse blood creatinine level was used to assess renal function and kidney specimens were processed to detect cell proliferation, apoptosis and angiogenesis. Immune cells infiltration was analyzed by flow cytometry. hAECs-EXO was used to treat hypoxia-reoxygenation (H/R) injured HK2 cells and mouse bone marrow-derived macrophages to evaluate their protective effect in vitro. Furthermore, hAEC exosomes were subjected to liquid chromatography-tandem mass spectrometry for proteomic profiling. Results: We found that systematically administered hAECs could improve mortality and renal function in IRI mice; decrease the number of apoptotic cells; promote peritubular capillary regeneration and modulate kidney local immune response. However, hAECs showed very low kidney tissue integration. Exosomes isolated from hAECs recapitulated the renal protective effects of their parent cells. In vitro, hAECs-EXO protected HK-2 cells from H/R injury-induced apoptosis and promoted bone marrow-derived macrophage polarization toward M2 phenotype. Proteomic analysis on hAECs-EXO revealed proteins involved in extracellular matrix organization, growth factor signaling pathways, cytokine production and immunomodulation. These findings demonstrated that paracrine of exosomes might be a key mechanism by hAECs mediating kidney functional recovery in AKI.Conclusions: We first reported hAECs could improve mortality and renal repair in mice with ischemia-reperfusion injury. The anti-apoptotic, pro-angiogenetic, and immunomodulatory capabilities of hAECs at least partially, through paracrine pathways. The renoprotective effects of hAECs-EXO might be a promising clinical therapeutic tool, overcoming the weaknesses and risks associated with the use of native stem cells for patients with AKI.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Li Chen ◽  
Jun-Ying Xu ◽  
Hong-Bao Tan

AbstractBackgroundAcute kidney injury (AKI) results from renal dysfunction caused by various causes, resulting in high mortality. The underlying mechanisms of ischemia-reperfusion (I/R) induced AKI is very complicated and needed for further research. Here, we sought to found out the functions of lncRNA TUG1 in I/R-induced AKI.MethodsIn vivo model was constructed by I/R-induced mice and in vitro model was constructed by hypoxia/reoxygenation (H/R)-induced HK-2 cell. Kidney tissue damage was evaluated through H&E staining in mice. Cell flow cytometry was used to detect the degree of apoptosis. TUG1, miR-494-3p and E-cadherin were determined both by RT-PCR and western blot. Dual luciferase assay was employed to validate the relationships between TUG1, miR-494-3p and E-cadherin. Inflammatory factors including IL-1β, TNFɑ and IL-6 were evaluated by ELISA.ResultslncRNA TUG1 was decreased while miR-494-3p was elevated in vivo and in vitro. Overexpression of TUG1 or transfection with miR-494-3p inhibitor significantly alleviated cell apoptosis. MiR-494-3p directly targeted E-cadherin and TUG1 suppressed cell apoptosis via serving as a miR-494-3p sponge to disinhibit E-cadherin.ConclusionlncRNA TUG1 alleviated I/R-induced AKI through targeting miR-494-3p/E-cadherin.


2021 ◽  
Vol 22 (21) ◽  
pp. 11448
Author(s):  
Keiko Hosohata ◽  
Denan Jin ◽  
Shinji Takai

Oxidative stress plays an important role in the pathophysiology of acute kidney injury (AKI). Previously, we reported that vanin-1, which is involved in oxidative stress, is associated with renal tubular injury. This study was aimed to determine whether urinary vanin-1 is a biomarker for the early diagnosis of AKI in two experimental models: in vivo and in vitro. In a rat model of AKI, ischemic AKI was induced in uninephrectomized rats by clamping the left renal artery for 45 min and then reperfusing the kidney. On Day 1 after renal ischemia/reperfusion (I/R), serum creatinine (SCr) in I/R rats was higher than in sham-operated rats, but this did not reach significance. Urinary N-acetyl-β-D-glucosaminidase (NAG) exhibited a significant increase but decreased on Day 2 in I/R rats. In contrast, urinary vanin-1 significantly increased on Day 1 and remained at a significant high level on Day 2 in I/R rats. Renal vanin-1 protein decreased on Days 1 and 3. In line with these findings, immunofluorescence staining demonstrated that vanin-1 was attenuated in the renal proximal tubules of I/R rats. Our in vitro results confirmed that the supernatant from HK-2 cells under hypoxia/reoxygenation included significantly higher levels of vanin-1 as well as KIM-1 and NGAL. In conclusion, our results suggest that urinary vanin-1 might be a potential novel biomarker of AKI induced by I/R.


2020 ◽  
Vol 134 (16) ◽  
pp. 2223-2234 ◽  
Author(s):  
Wenjuan Yu ◽  
Honghui Zeng ◽  
Junzhe Chen ◽  
Sha Fu ◽  
Qiuyan Huang ◽  
...  

Abstract Exosomes have been shown to effectively regulate the biological functions of target cells. Here, we investigated the protective effect and mechanism of hypoxia-induced renal tubular epithelial cells (TECs)-derived exosomes on acute tubular injury. We found that in vitro hypoxia-induced tubular exosomes (Hy-EXOs) were protective in acute tubular injury by promoting TECs proliferation and improving mitochondrial functions. By using exosome miRNA sequencing, we identified miR-20a-5p was abundant and was a key mechanism for the protective effect of Hy-EXOs on tubular injury as up-regulation of miR-20a-5p enhanced but down-regulation of miR-20a-5p inhibited the protective effect of Hy-EXOs on tubular injury under hypoxia conditions. Further study in a mouse model of ischemia–reperfusion-induced acute kidney injury (IRI-AKI) also confirmed this notion as pre-treating mice with the miR-20a-5p agomir 48 h prior to AKI induction was capable of inhibiting IRI-AKI by lowering serum levels of creatinine and urea nitrogen, and attenuating the severity of tubular necrosis, F4/80(+) macrophages infiltration and vascular rarefaction. Mechanistically, the protective effect of miR-20a-5p on acute kidney injury (AKI) was associated with inhibition of TECs mitochondrial injury and apoptosis in vitro and in vivo. In conclusion, miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury. Results from the present study also reveal that miR-20a-5p may represent as a novel therapy for AKI.


Author(s):  
Zhi-Lin Luan ◽  
Wen-Hua Ming ◽  
Xiao-Wan Sun ◽  
Cong Zhang ◽  
Yang Zhou ◽  
...  

The ligand-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating renal function. Activation of FXR by its specific agonists exerts renoprotective action in animals with acute kidney injury (AKI). In the present study, we aimed to identify naturally occurring agonists of FXR with potential as therapeutic agents in renal ischemia-perfusion injury (IRI). In vitro and in vivo FXR activation was determined by dual-luciferase assay, docking analysis, site-directed mutagenesis, and whole kidney transcriptome analysis. Wild-type (WT) and FXR knockout (FXR-/-) mice were used to determine the effect of potential FXR agonist on renal IRI. We found that alisol B 23-acetate (ABA), a major active triterpenoid extracted from Alismatis Rhizoma, a well-known traditional Chinese medicine, can activate renal FXR and induce FXR downstream gene expression in mouse kidney. ABA treatment significantly attenuated renal IR-induced AKI in WT mice but not in FXR-/- mice. Our results demonstrate that ABA can activate renal FXR to exert renoprotection against IRI-induced AKI. Therefore, ABA may represent a potential therapeutic agent in the treatment of ischemic AKI.


Sign in / Sign up

Export Citation Format

Share Document