scholarly journals Mononuclear phagocyte subpopulations in the mouse kidney

2017 ◽  
Vol 312 (4) ◽  
pp. F640-F646 ◽  
Author(s):  
James F. George ◽  
Jeremie M. Lever ◽  
Anupam Agarwal

Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Na Li ◽  
Stefanie Steiger ◽  
Lingyan Fei ◽  
Chenyu Li ◽  
Chongxu Shi ◽  
...  

Post-ischemic acute kidney injury and disease (AKI/AKD) involve acute tubular necrosis and irreversible nephron loss. Mononuclear phagocytes including conventional dendritic cells (cDCs) are present during different phases of injury and repair, but the functional contribution of this subset remains controversial. Transcription factor interferon regulatory factor 8 (IRF8) is required for the development of type I conventional dendritic cells (cDC1s) lineage and helps to define distinct cDC1 subsets. We identified one distinct subset among mononuclear phagocyte subsets according to the expression patterns of CD11b and CD11c in healthy kidney and lymphoid organs, of which IRF8 was significantly expressed in the CD11blowCD11chigh subset that mainly comprised cDC1s. Next, we applied a Irf8-deficient mouse line (Irf8fl/flClec9acre mice) to specifically target Clec9a-expressing cDC1s in vivo. During post-ischemic AKI/AKD, these mice lacked cDC1s in the kidney without affecting cDC2s. The absence of cDC1s mildly aggravated the loss of living primary tubule and decline of kidney function, which was associated with decreased anti-inflammatory Tregs-related immune responses, but increased T helper type 1 (TH1)-related and pro-inflammatory cytokines, infiltrating neutrophils and acute tubular cell death, while we also observed a reduced number of cytotoxic CD8+ T cells in the kidney when cDC1s were absent. Together, our data show that IRF8 is indispensable for kidney cDC1s. Kidney cDC1s mildly protect against post-ischemic AKI/AKD, probably via suppressing tissue inflammation and damage, which implies an immunoregulatory role for cDC1s.


2020 ◽  
Vol 41 (48) ◽  
pp. 4592-4598
Author(s):  
Andrew S Levey ◽  
Kai-Uwe Eckardt ◽  
Nijsje M Dorman ◽  
Stacy L Christiansen ◽  
Michael Cheung ◽  
...  

Abstract The worldwide burden of kidney disease is rising, but public awareness remains limited, underscoring the need for more effective communication by stakeholders in the kidney health community. Despite this need for clarity, the nomenclature for describing kidney function and disease lacks uniformity. In June 2019, Kidney Disease: Improving Global Outcomes (KDIGO) convened a consensus conference with the goal of standardizing and refining the nomenclature used in the English language to describe kidney function and disease, and of developing a glossary that could be used by journals in scientific publications. Guiding principles of the conference were that the revised nomenclature should be patient-centred, precise, and consistent with nomenclature used in the KDIGO guidelines. Conference attendees reached general consensus on the following recommendations: (i) to use ‘kidney’ rather than ‘renal’ or ‘nephro’ when referring to kidney disease and kidney function; (ii) to use ‘kidney failure’ with appropriate descriptions of the presence or absence of symptoms, signs, and treatment rather than ‘end-stage’ kidney disease; (iii) to use the KDIGO definition and classification of acute kidney diseases and disorders (AKD) and acute kidney injury (AKI) rather than alternative descriptions to define and classify the severity of AKD and AKI; (iv) to use the KDIGO definition and classification of chronic kidney disease (CKD) rather than alternative descriptions to define and classify the severity of CKD; and (v) to use specific kidney measures, such as albuminuria or decreased glomerular filtration rate, rather than ‘abnormal or reduced kidney function’ to describe alterations in kidney structure and function. A proposed five-part glossary contains specific items for which there was general agreement. Conference attendees acknowledged limitations of the recommendations and glossary but considered that standardizing scientific nomenclature is essential for improving communication.


Nephron ◽  
2021 ◽  
pp. 1-4
Author(s):  
Andrew S. Levey

Kidney Disease Improving Global Outcomes (KDIGO) guidelines address the definition, classification, and management of acute kidney injury (AKI) and chronic kidney disease (CKD). In practice, some clinical presentations of acute kidney diseases and disorders (AKD) do not meet the criteria for AKI or CKD. In principle, these presentations may be caused by the same diseases that cause AKI or CKD, which could be detected, evaluated, and treated before they evolve to AKI or CKD. In 2020, KDIGO convened a consensus conference to review recent evidence on the epidemiology of AKD and harmonize the definition and classification of AKD to be consistent with KDIGO definitions and classifications of AKI and CKD.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Feng Ping ◽  
Yingchuan Li ◽  
Yongmei Cao ◽  
Jiawei Shang ◽  
Zhongwei Zhang ◽  
...  

Sepsis-induced acute kidney injury (SI-AKI) is a serious condition in critically ill patients. Currently, the diagnosis is based on either elevated serum creatinine levels or oliguria, which partially contribute to delayed recognition of AKI. Metabolomics is a potential approach for identifying small molecule biomarkers of kidney diseases. Here, we studied serum metabolomics alterations in rats with sepsis to identify early biomarkers of sepsis and SI-AKI. A rat model of SI-AKI was established by intraperitoneal injection of lipopolysaccharide (LPS). Thirty Sprague-Dawley (SD) rats were randomly divided into the control (CT) group and groups treated for 2 hours (LPS2) and 6 hours (LPS6) with LPS (10 rats per group). Nontargeted metabolomics screening was performed on the serum samples from the control and SI-AKI groups. Combined multivariate and univariate analysis was used for pairwise comparison of all groups to identify significantly altered serum metabolite levels in early-stage AKI in rats with sepsis. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed obvious separation between the CT and LPS2 groups, CT and LPS6 groups, and LPS2 and LPS6 groups. All comparisons of the groups identified a series of differential metabolites according to the threshold defined for potential biomarkers. Intersections and summaries of these differential metabolites were used for pathway enrichment analysis. The results suggested that sepsis can cause an increase in systemic aerobic and anaerobic metabolism, an impairment of the oxygen supply, and uptake and abnormal fatty acid metabolism. Changes in the levels of malic acid, methionine sulfoxide, and petroselinic acid were consistently measured during the progression of sepsis. The development of sepsis was accompanied by the development of AKI, and these metabolic disorders are directly or indirectly related to the development of SI-AKI.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Katarzyna Szajek ◽  
Marie-Elisabeth Kajdi ◽  
Valerie A. Luyckx ◽  
Thomas Hans Fehr ◽  
Ariana Gaspert ◽  
...  

Abstract Background Acute kidney injury (AKI) associated with severe coronavirus disease 19 (COVID-19) is common and is a significant predictor of morbidity and mortality, especially when dialysis is required. Case reports and autopsy series have revealed that most patients with COVID-19 – associated acute kidney injury have evidence of acute tubular injury and necrosis - not unexpected in critically ill patients. Others have been found to have collapsing glomerulopathy, thrombotic microangiopathy and diverse underlying kidney diseases. A primary kidney pathology related to COVID-19 has not yet emerged. Thus far direct infection of the kidney, or its impact on clinical disease remains controversial. The management of AKI is currently supportive. Case Presentation The patient presented here was positive for SARS-CoV-2, had severe acute respiratory distress syndrome and multi-organ failure. Within days of admission to the intensive care unit he developed oliguric acute kidney failure requiring dialysis. Acute kidney injury developed in the setting of hemodynamic instability, sepsis and a maculopapular rash. Over the ensuing days the patient also developed transfusion-requiring severe hemolysis which was Coombs negative. Schistocytes were present on the peripheral smear. Given the broad differential diagnoses for acute kidney injury, a kidney biopsy was performed and revealed granulomatous tubulo-interstitial nephritis with some acute tubular injury. Based on the biopsy findings, a decision was taken to adjust medications and initiate corticosteroids for presumed medication-induced interstitial nephritis, hemolysis and maculo-papular rash. The kidney function and hemolysis improved over the subsequent days and the patient was discharged to a rehabilitation facility, no-longer required dialysis. Conclusions Acute kidney injury in patients with severe COVID-19 may have multiple causes. We present the first case of granulomatous interstitial nephritis in a patient with COVID-19. Drug-reactions may be more frequent than currently recognized in COVID-19 and are potentially reversible. The kidney biopsy findings in this case led to a change in therapy, which was associated with subsequent patient improvement. Kidney biopsy may therefore have significant value in pulling together a clinical diagnosis, and may impact outcome if a treatable cause is identified.


2021 ◽  
Vol 8 ◽  
pp. 205435812110180
Author(s):  
Orit Kliuk-Ben Bassat ◽  
Sapir Sadon ◽  
Svetlana Sirota ◽  
Arie Steinvil ◽  
Maayan Konigstein ◽  
...  

Background: Transcatheter aortic valve replacement (TAVR), although associated with an increased risk for acute kidney injury (AKI), may also result in improvement in renal function. Objective: The aim of this study is to evaluate the magnitude of kidney function improvement (KFI) after TAVR and to assess its significance on long-term mortality. Design: This is a prospective single center study. Setting: The study was conducted in cardiology department, interventional unit, in a tertiary hospital. Patients: The cohort included 1321 patients who underwent TAVR. Measurements: Serum creatinine level was measured at baseline, before the procedure, and over the next 7 days or until discharge. Methods: Kidney function improvement was defined as the mirror image of AKI, a reduction in pre-procedural to post-procedural minimal creatinine of more than 0.3 mg/dL, or a ratio of post-procedural minimal creatinine to pre-procedural creatinine of less than 0.66, up to 7 days after the procedure. Patients were categorized and compared for clinical endpoints according to post-procedural renal function change into 3 groups: KFI, AKI, or preserved kidney function (PKF). The primary endpoint was long-term all-cause mortality. Results: The incidence of KFI was 5%. In 55 out of 66 patients patients, the improvement in kidney function was minor and of unclear clinical significance. Acute kidney injury occurred in 19.1%. Estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 was a predictor of KFI after multivariable analysis (odds ratio = 0.93 to develop KFI; confidence interval [95% CI]: 0.91-0.95, P < .001). Patients in the KFI group had a higher Society of Thoracic Surgery (STS) score than other groups. Mortality rate did not differ between KFI group and PKF group (43.9% in KFI group and 33.8% in PKF group) but was significantly higher in the AKI group (60.7%, P < .001). Limitations: The following are the limitations: heterozygous definitions of KFI within different studies and a single center study. Although data were collected prospectively, analysis plan was defined after data collection. Conclusions: Improvement in kidney function following TAVR was not a common phenomenon in our cohort and did not reduce overall mortality rate.


Sign in / Sign up

Export Citation Format

Share Document