Acidosis impairs insulin receptor substrate-1-associated phosphoinositide 3-kinase signaling in muscle cells: consequences on proteolysis

2004 ◽  
Vol 287 (4) ◽  
pp. F700-F706 ◽  
Author(s):  
Harold A. Franch ◽  
Sina Raissi ◽  
Xiaonan Wang ◽  
Bin Zheng ◽  
James L. Bailey ◽  
...  

Chronic acidosis is a stimulus for proteolysis in muscle in vivo, but the mechanism of this response is unknown. We tested the hypothesis that acidosis or TNF-α, a cytokine whose production increases in acidosis, regulates proteolysis by inhibiting insulin signaling through phosphoinositide 3-kinase (PI3K). In cultured L6 myotubes, acidified (pH 7.1) media did not accelerate the basal protein degradation rate, but it inhibited insulin’s ability to suppress proteolysis. Insulin receptor substrate-1 (IRS-1)-associated PI3K activity was not altered in cells acidified for 10 min but was strongly inhibited in cells incubated at pH 7.1 for 24 h. Phosphorylation of Akt was also suppressed by acidification for 24 h. Acidification did not induce changes in IRS-1 abundance, insulin-stimulated IRS-1 tyrosine phosphorylation, or the amount of PI3K p85 regulatory subunit. In contrast to acidification, TNF-α suppressed proteolysis in the presence or absence of insulin but had no effect on IRS-1-associated PI3K activity. To establish that the PI3K pathway can regulate protein degradation in muscle, we measured proteolysis in cells after inhibition of PI3K activity with LY-294002 or infection with an adenovirus encoding a dominant negative PI3K p85α-subunit. Both approaches inhibited insulin-induced suppression of proteolysis to a degree similar to that seen with acidification. We conclude that acidosis accelerates protein degradation by impairing insulin signaling through PI3K in muscle cells.

2008 ◽  
Vol 8 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Naoto Kubota ◽  
Tetsuya Kubota ◽  
Shinsuke Itoh ◽  
Hiroki Kumagai ◽  
Hideki Kozono ◽  
...  

2004 ◽  
Vol 24 (21) ◽  
pp. 9668-9681 ◽  
Author(s):  
Yan-Fang Liu ◽  
Avia Herschkovitz ◽  
Sigalit Boura-Halfon ◽  
Denise Ronen ◽  
Keren Paz ◽  
...  

ABSTRACT Ser/Thr phosphorylation of insulin receptor substrate (IRS) proteins negatively modulates insulin signaling. Therefore, the identification of serine sites whose phosphorylation inhibit IRS protein functions is of physiological importance. Here we mutated seven Ser sites located proximal to the phosphotyrosine binding domain of insulin receptor substrate 1 (IRS-1) (S265, S302, S325, S336, S358, S407, and S408) into Ala. When overexpressed in rat hepatoma Fao or CHO cells, the mutated IRS-1 protein in which the seven Ser sites were mutated to Ala (IRS-17A), unlike wild-type IRS-1 (IRS-1WT), maintained its Tyr-phosphorylated active conformation after prolonged insulin treatment or when the cells were challenged with inducers of insulin resistance prior to acute insulin treatment. This was due to the ability of IRS-17A to remain complexed with the insulin receptor (IR), unlike IRS-1WT, which underwent Ser phosphorylation, resulting in its dissociation from IR. Studies of truncated forms of IRS-1 revealed that the region between amino acids 365 to 430 is a main insulin-stimulated Ser phosphorylation domain. Indeed, IRS-1 mutated only at S408, which undergoes phosphorylation in vivo, partially maintained the properties of IRS-17A and conferred protection against selected inducers of insulin resistance. These findings suggest that S408 and additional Ser sites among the seven mutated Ser sites are targets for IRS-1 kinases that play a key negative regulatory role in IRS-1 function and insulin action. These sites presumably serve as points of convergence, where physiological feedback control mechanisms, which are triggered by insulin-stimulated IRS kinases, overlap with IRS kinases triggered by inducers of insulin resistance to terminate insulin signaling.


1998 ◽  
Vol 273 (39) ◽  
pp. 25347-25355 ◽  
Author(s):  
Takanobu Imanaka ◽  
Hideki Hayashi ◽  
Kazuhiro Kishi ◽  
Lihong Wang ◽  
Kazuo Ishii ◽  
...  

1994 ◽  
Vol 14 (7) ◽  
pp. 4427-4434 ◽  
Author(s):  
K Yamauchi ◽  
J E Pessin

Insulin treatment of Chinese hamster ovary (CHO) cells expressing high levels of the insulin receptor (CHO/IR cells) activates both c-fos serum response element and activator protein 1 (AP-1) reporter genes approximately 10-fold. In contrast, parental CHO cells display only two- to threefold insulin stimulation of reporter gene activity. Transient transfection of parental CHO cells with an insulin receptor substrate 1 (IRS1) expression plasmid enhanced insulin downstream signaling in a biphasic manner, whereas IRS1 transfection of CHO/IR cells inhibited insulin signaling in a dose-dependent fashion. Further, expression of Grb2 in parental CHO cells had no effect on insulin signaling, whereas Grb2 increased insulin activation of reporter gene expression in CHO/IR cells. These data suggest that the expression levels of various effector molecules can either enhance or inhibit insulin downstream signaling events. To assess the relative effects of various insulin receptor, IRS1, and Grb2 levels on insulin signaling, parental CHO cells were transiently transfected with various combinations of expression plasmids encoding these proteins. Although expression of IRS1 resulted in a biphasic increase of insulin signaling in parental CHO cells, coexpression of IRS1 with the insulin receptor resulted in inhibition of signaling. This inhibition of insulin signaling directly correlated with an increased association of Grb2 with IRS1 and a concomitant sequestration of Grb2 away from Shc. Consistent with the Shc-Grb2 pathway as the major route for insulin-stimulated c-Fos and AP-1 transcriptional activation, the IRS1-mediated inhibition was reversed by transfection with an expression plasmid for Grb2. These data demonstrate that the extent of insulin-stimulated downstream signaling was dependent not only on the levels of individual signaling molecules but also on the formation of multiprotein complexes with specific stoichiometries.


Sign in / Sign up

Export Citation Format

Share Document