Quantification of K+ secretion through apical low-conductance K channels in the CCD

2005 ◽  
Vol 289 (1) ◽  
pp. F117-F126 ◽  
Author(s):  
Daniel A. Gray ◽  
Gustavo Frindt ◽  
Lawrence G. Palmer

Outward and inward currents through single small-conductance K+ (SK) channels were measured in cell-attached patches of the apical membrane of principal cells of the rat cortical collecting duct (CCD). Currents showed mild inward rectification with high [K+] in the pipette (Kp+), which decreased as Kp+ was lowered. Inward conductances had a hyperbolic dependence on Kp+ with half-maximal conductance at ∼20 mM. Outward conductances, measured near the reversal potential, also increased with Kp+ from 15 pS (Kp+ = 0) to 50 pS (Kp+ = 134 mM). SK channel density was measured as the number of conducting channels per patch in cell-attached patches. As reported previously, channel density increased when animals were on a high-K diet for 7 days. Addition of 8-cpt-cAMP to the bath at least 5 min before making a seal increased SK channel density to an even greater extent, although this increase was not additive with the effect of a high-K diet. In contrast, increases in Na channel activity, assessed as the whole cell amiloride-sensitive current, due to K loading and 8-cpt-cAMP treatment were additive. Single-channel conductances and channel densities were used as inputs to a simple mathematical model of the CCD to predict rates of transepithelial Na+ and K+ transport as a function of apical Na+ permeability and K+ conductance, basolateral pump rates and K+ conductance, and the paracellular conductance. With measured values for these parameters, the model predicted transport rates that were in good agreement with values measured in isolated, perfused tubules. The number and properties of SK channels account for K+ transport by the CCD under all physiological conditions tested.

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Daohong Lin ◽  
Chengbiao Zhang ◽  
Lijun Wang ◽  
Wenhui Wang

Cyp epoxygenase is responsible for metabolizing arachidonic acid to epoxyeicosatrienoic acid (EET) in the kidney and vascular tissues. EET has been shown to cause vasodilation by stimulating Ca 2+ -activated K channels in vascular smooth muscles and to have natriuretic effect by inhibiting the epithelial Na channel (ENaC) in the kidney. In the present study we used real time PCR technique to examine the effect of high salt intake or high K intake on Cyp2c44 (a major type of Cyp epoxygenase in the mouse kidney) in the proximal tubule (PxT), thick ascending limb (TAL), distal convoluted tubule (DCT) and the CNT/CCD. An increase in dietary Na content stimulates the expression of Cyp2c4 in TAL, DCT and CNT/CCD but not in PxT while an increase in dietary K intake augments the expression of Cyp2c44 only in DCT and CNT/CCD. Neither high salt intake nor high K intake has a significant effect on the blood pressure (BP) in wt mice. However, high K intake increased BP in CNT/CCD specific conditional knockout (KO) mice. In contrast, the high Na intake did not significantly increase the BP in those KO mice. This suggests that Cyp2c44 in the CNT/CCD plays a key role in preventing hypertension induced by increasing dietary K intake. Administration of amiloride (a ENaC inhibitor) restored the normal BP in KO mice fed high K diet, suggesting that down-regulation of Cyp2c44 may enhance the Na absorption in the CNT/CCD. This notion was also supported by metabolic cage study demonstrating that renal Na excretion was compromised in KO mice. We conclude that Cyp2c44 plays a key role in stimulating renal Na excretion during increasing dietary K intake and that Cyp-epoxygenase is required for antihypertensive effect induced by high K intake.


1986 ◽  
Vol 251 (1) ◽  
pp. C85-C89 ◽  
Author(s):  
N. W. Richards ◽  
D. C. Dawson

The patch-clamp technique for recording single-channel currents across cell membranes was applied to single turtle colon epithelial cells isolated with hyaluronidase. With electrodes fabricated from Corning #7052 glass, high-resistance seals were consistently formed to these cells. In on-cell patches with low K (2.5 mM) in the pipette and high K (114.5 mM) in the bath, outward K currents were recorded that had a slope conductance of 17 pS and a reversal potential greater than -70 mV. Currents through this K channel were blocked by lidocaine, quinidine, and barium. These agents also block a cell swelling-induced K conductance identified by macroscopic current measurements in the basolateral membranes of the intact colonic epithelium, suggesting that the 17 pS K channel identified by single-channel recording in isolated turtle colon cells may be responsible for this macroscopically defined K conductance.


2006 ◽  
Vol 291 (3) ◽  
pp. F683-F693 ◽  
Author(s):  
Zuhal Ergonul ◽  
Gustavo Frindt ◽  
Lawrence G. Palmer

Antibodies directed against subunits of the epithelial Na channel (ENaC) were used together with electrophysiological measurements in the cortical collecting duct to investigate the processing of the proteins in rat kidney with changes in Na or K intake. When animals were maintained on a low-Na diet for 7–9 days, the abundance of two forms of the α-subunit, with apparent masses of 85 and 30 kDa, increased. Salt restriction also increased the abundance of the β-subunit and produced an endoglycosidase H (Endo H)-resistant pool of this subunit. The abundance of the 90-kDa form of the γ-subunit decreased, whereas that of a 70-kDa form increased and this peptide also exhibited Endo H-resistant glycosylation. These changes in α- and γ-subunits were correlated with increases in Na conductance elicited by a 4-h infusion with aldosterone. Changes in all three subunits were correlated with decreases in Na conductance when Na-deprived animals drank saline for 5 h. We conclude that ENaC subunits are mainly in an immature form in salt-replete rats. With Na depletion, the subunits mature in a process that involves proteolytic cleavage and further glycosylation. Similar changes occurred in α- and γ- but not β-subunits when animals were treated with exogenous aldosterone, and in β- and γ- but not α-subunits when animals were fed a high-K diet. Changes in the processing and maturation of the channels occur rapidly enough to be involved in the daily regulation of ENaC activity and Na reabsorption by the kidney.


2014 ◽  
Vol 307 (7) ◽  
pp. F806-F813 ◽  
Author(s):  
Tiffany L. Thai ◽  
Ling Yu ◽  
Douglas C. Eaton ◽  
Billie Jean Duke ◽  
Otor Al-Khalili ◽  
...  

The polarized nature of epithelial cells allows for different responses to luminal or serosal stimuli. In kidney tubules, ATP is produced luminally in response to changes in luminal flow. Luminal increases in ATP have been previously shown to inhibit the renal epithelial Na+ channel (ENaC). On the other hand, ATP is increased basolaterally in renal epithelia in response to aldosterone. We tested the hypothesis that basolateral ATP can stimulate ENaC function through activation of the P2X4 receptor/channel. Using single channel cell-attached patch-clamp techniques, we demonstrated the existence of a basolaterally expressed channel stimulated by the P2X4 agonist 2-methylthio-ATP (meSATP) in Xenopus A6 cells, a renal collecting duct principal cell line. This channel had a similar reversal potential and conductance to that of P2X4 channels. Cell surface biotinylation of the basolateral side of these cells confirmed the basolateral presence of the P2X4 receptor. Basolateral addition of meSATP enhanced the activity of ENaC in single channel patch-clamp experiments, an effect that was absent in cells transfected with a dominant negative P2X4 receptor construct, indicating that activation of P2X4 channels stimulates ENaC activity in these cells. The effect of meSATP on ENaC activity was reduced after chelation of basolateral Ca2+ with EGTA or inhibition of phosphatidylinositol 3-kinase with LY-294002. Overall, our results show that ENaC is stimulated by P2X4 receptor activation and that the stimulation is dependent on increases in intracellular Ca2+ and phosphatidylinositol 3-kinase activation.


1988 ◽  
Vol 92 (4) ◽  
pp. 413-430 ◽  
Author(s):  
J B Patlak

The currents through single Na+ channels were recorded from dissociated cells of the flexor digitorum brevis muscle of the mouse. At 15 degrees C the prolonged bursts of Na+ channel openings produced by application of the drug DPI 201-106 had brief sojourns to subconductance levels. The subconductance events were relatively rare and brief, but could be identified using a new technique that sorts amplitude estimates based on their variance. The resulting "levels histogram" had a resolution of the conductance levels during channel activity that was superior to that of standard amplitude histograms. Cooling the preparation to 0 degrees C prolonged the subconductance events, and permitted further quantitative analysis of their amplitudes, as well as clear observations of single-channel subconductance events from untreated Na+ channels. In all cases the results were similar: a subconductance level, with an amplitude of roughly 35% of the fully open conductance and similar reversal potential, was present in both drug-treated and normal Na+ channels. Drug-treated channels spent approximately 3-6% of their total open time in the subconductance state over a range of potentials that caused the open probability to vary between 0.1 and 0.9. The summed levels histograms from many channels had a distinctive form, with broader, asymmetrical open and substate distributions compared with those of the closed state. Individual subconductance events to levels other than the most common 35% were also observed. I conclude that subconductance events are a normal subset of the open state of Na+ channels, whether or not they are drug treated. The subconductance events may represent a conformational alteration of the channel that occurs when it conducts ions.


1985 ◽  
Vol 249 (5) ◽  
pp. C421-C429 ◽  
Author(s):  
J. Tang ◽  
F. J. Abramcheck ◽  
W. Van Driessche ◽  
S. I. Helman

Epithelia of frog skin bathed either symmetrically with a sulfate-Ringer solution or bathed asymmetrically and depolarized with a 112 mM K+ basolateral solution (Kb+) were studied with intracellular microelectrode techniques. Kb+ depolarization caused an initial decrease of the short-circuit current (Isc) with a subsequent return of the Isc toward control values in 60-90 min. Whereas basolateral membrane resistance (Rb) and voltage were decreased markedly by high [Kb+], apical membrane electrical resistance (Ra) was decreased also. After 60 min, intracellular voltage averaged -27.3 mV, transcellular fractional resistance (fRa) was 86.8%, and Ra and Rb were decreased to 36.1 and 13.0%, of their control values, respectively. Amiloride-induced noise analysis of the apical membrane Na+ channels revealed that Na+ channel density was increased approximately 72% while single-channel Na+ current was decreased to 39.9% of control, roughly proportional to the decrease of apical membrane voltage (34.0% of control). In control and Kb+-depolarized epithelia, the Na+ channel density exhibited a phenomenon of autoregulation. Inhibition of Na+ entry (by amiloride) caused large increases of Na+ channel density toward saturating values of approximately 520 X 10(6) channels/cm2 in Kb+-depolarized tissues.


2005 ◽  
Vol 289 (5) ◽  
pp. F1065-F1071 ◽  
Author(s):  
Yuan Wei ◽  
Elisa Babilonia ◽  
Hyacinth Sterling ◽  
Yan Jin ◽  
Wen-Hui Wang

We used the patch-clamp technique to examine the effect of DOCA treatment (2 mg/kg) on the apical small-conductance K (SK) channels, epithelial Na channels (ENaC), and the basolateral 18-pS K channels in the cortical collecting duct (CCD). Treatment of rats with DOCA for 6 days significantly decreased the plasma K from 3.8 to 3.1 meq and reduced the activity of the SK channel, defined as NPo, from 1.3 in the CCD of control rats to 0.6. In contrast, DOCA treatment significantly increased ENaC activity from 0.01 to 0.53 and the basolateral 18-pS K channel activity from 0.67 to 1.63. Moreover, Western blot analysis revealed that DOCA treatment significantly increased the expression of the nonreceptor type of protein tyrosine kinase (PTK), cSrc, and the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. The possibility that decreases in apical SK channel activity induced by DOCA treatment were the result of stimulation of PTK activity was further supported by experiments in which inhibition of PTK with herbimycin A significantly increased NPo from 0.6 to 2.1 in the CCD from rats receiving DOCA. Also, when rats were fed a high-K (10%) diet, DOCA treatment did not increase the expression of c-Src and decrease the activity of the SK channel in the CCD. We conclude that DOCA treatment decreased the apical SK channel activity in rats on a normal-K diet and that an increase in PTK expression may be responsible for decreased channel activity in the CCD from DOCA-treated rats.


2005 ◽  
Vol 289 (4) ◽  
pp. F922-F932 ◽  
Author(s):  
Fadi Najjar ◽  
Hao Zhou ◽  
Tetsuji Morimoto ◽  
James B. Bruns ◽  
Hai-Sheng Li ◽  
...  

The cortical collecting duct (CCD) is a final site for regulation of K+ homeostasis. CCD K+ secretion is determined by the electrochemical gradient and apical permeability to K+. Conducting secretory K+ (SK/ROMK) and maxi-K channels are present in the apical membrane of the CCD, the former in principal cells and the latter in both principal and intercalated cells. Whereas SK channels mediate baseline K+ secretion, maxi-K channels appear to participate in flow-stimulated K+ secretion. Chronic dietary K+ loading enhances the CCD K+ secretory capacity due, in part, to an increase in SK channel density (Palmer et al., J Gen Physiol 104: 693–710, 1994). Long-term exposure of Ambystoma tigrinum to elevated K+ increases renal K+ excretion due to an increase in apical maxi-K channel density in their CDs (Stoner and Viggiano, J Membr Biol 162: 107–116, 1998). The purpose of the present study was to test whether K+ adaptation in the mammalian CCD is associated with upregulation of maxi-K channel expression. New Zealand White rabbits were fed a low (LK), control (CK), or high (HK) K+ diet for 10–14 days. Real-time PCR quantitation of message encoding maxi-K α- and β2–4-subunits in single CCDs from HK animals was greater than that detected in CK and LK animals ( P < 0.05); β1-subunit was not detected in any CCD sample but was present in whole kidney. Indirect immunofluorescence microscopy revealed a predominantly intracellular distribution of α-subunits in LK kidneys. In contrast, robust apical labeling was detected primarily in α-intercalated cells in HK kidneys. In summary, K+ adaptation is associated with an increase in steady-state abundance of maxi-K channel subunit-specific mRNAs and immunodetectable apical α-subunit, the latter observation consistent with redistribution from an intracellular pool to the plasma membrane.


1985 ◽  
Vol 85 (4) ◽  
pp. 555-582 ◽  
Author(s):  
F J Abramcheck ◽  
W Van Driessche ◽  
S I Helman

Noise analysis of the Na+ channels of the apical membranes of frog skin bathed symmetrically in a Cl-HCO3 Ringer solution was done with amiloride and CGS 4270. Tissues were studied in their control states and after inhibition of transepithelial Na+ transport (Isc) by addition of quinine or quinidine to the apical solution. A critical examination of the amiloride-induced noise indicated that the single channel Na+ currents (iNa) were decreased by quinine and quinidine, probably because of depolarization of apical membrane voltage. Despite considerable statistical uncertainty in the methods of estimation of the Na+ channel density with amiloride-induced noise (NA, see text), the striking observation was a large increase of NA with amiloride inhibition of the rate of Na+ entry into the cells. NA was increased to 406% of control, whereas Isc was inhibited to 8.6% of control by 6 microM amiloride. Studies were done also with the Na+ channel blocker CGS 4270. Noise analysis with this compound was advantageous, permitting iCGSNa and NCGS to be measured in individual tissues with a relatively small inhibition of Isc. As with amiloride, inhibition of Isc with CGS 4270 caused large increases of the Na+ channel density (approximately 200% at approximately 35% inhibition of the Isc). Quinine and quinidine caused an approximately 50% increase of Na+ channel density while inhibiting iNa by approximately 60-70%. As inhibition of Na+ entry leads to an increase of Na+ channel density, a mechanism of autoregulation appears to be a major factor in adjusting the apical membrane Na+ permeability of the cells.


1984 ◽  
Vol 247 (2) ◽  
pp. F380-F384
Author(s):  
B. M. Koeppen ◽  
K. W. Beyenbach ◽  
S. I. Helman

Patch-clamp techniques were used to study isolated renal cortical collecting ducts of rabbits. Gigaohm seals of the native apical membranes of the principal cells were obtained from tissues superfused with a Ringer solution. No enzymatic or other pretreatment of the tissues was required. The patches studied were primarily of the on-cell type, although excised patches could be obtained. Unitary currents in a range of tenths of picoamperes were observed at holding voltages between +/- 100 mV. Since the apparent reversal potential was at a holding voltage at or near 0 eatment of the tissues was required. The patches studied were primarily of the on-cell type, although excised patches could be obtained. Unitary currents in a range of tenths of picoamperes were observed at holding voltages between +/- 100 mV. Since the apparent reversal potential was at a holding voltage at or near 0 eatment of the tissues was required. The patches studied were primarily of the on-cell type, although excised patches could be obtained. Unitary currents in a range of tenths of picoamperes were observed at holding voltages between +/- 100 mV. Since the apparent reversal potential was at a holding voltage at or near 0 mV and since the current-voltage relationship was markedly nonlinear, the unitary currents are most likely due to K+ . Na+-channel current fluctuations, if present, could not be uniquely identified in the presence or absence of amiloride.


Sign in / Sign up

Export Citation Format

Share Document