Single-channel currents in renal tubules

1984 ◽  
Vol 247 (2) ◽  
pp. F380-F384
Author(s):  
B. M. Koeppen ◽  
K. W. Beyenbach ◽  
S. I. Helman

Patch-clamp techniques were used to study isolated renal cortical collecting ducts of rabbits. Gigaohm seals of the native apical membranes of the principal cells were obtained from tissues superfused with a Ringer solution. No enzymatic or other pretreatment of the tissues was required. The patches studied were primarily of the on-cell type, although excised patches could be obtained. Unitary currents in a range of tenths of picoamperes were observed at holding voltages between +/- 100 mV. Since the apparent reversal potential was at a holding voltage at or near 0 eatment of the tissues was required. The patches studied were primarily of the on-cell type, although excised patches could be obtained. Unitary currents in a range of tenths of picoamperes were observed at holding voltages between +/- 100 mV. Since the apparent reversal potential was at a holding voltage at or near 0 eatment of the tissues was required. The patches studied were primarily of the on-cell type, although excised patches could be obtained. Unitary currents in a range of tenths of picoamperes were observed at holding voltages between +/- 100 mV. Since the apparent reversal potential was at a holding voltage at or near 0 mV and since the current-voltage relationship was markedly nonlinear, the unitary currents are most likely due to K+ . Na+-channel current fluctuations, if present, could not be uniquely identified in the presence or absence of amiloride.

1989 ◽  
Vol 93 (1) ◽  
pp. 85-99 ◽  
Author(s):  
G E Kirsch ◽  
A M Brown

Single Na channel currents were compared in ventricular myocytes and cortical neurons of neonatal rats using the gigaseal patch-clamp method to determine whether tissue-specific differences in gating can be detected at the single-channel level. Single-channel currents were recorded in cell-attached and excised membrane patches at test potentials of -70 to -20 mV and at 9-11 degrees C. In both cell-attached and excised patches brain Na channel mean open time progressively increased from less than 1 ms at -70 mV to approximately 2 ms at -20 mV. Near threshold, single openings with dispersed latencies were observed. By contrast, in cell-attached patches, heart Na channel mean open time peaked near -50 mV, was three times brain Na channel mean open time, and declined continuously to approximately 2 ms at -20 mV. Near threshold, openings occurred frequently usually as brief bursts lasting several milliseconds and rarely as prolonged bursts lasting tens of milliseconds. Unlike what occurs in brain tissue where excision did not change gating, in excised heart patches both the frequency of prolonged bursting and the mean open time of single units increased markedly. Brain and cardiac Na channels can therefore be distinguished on the basis of their mean open times and bursting characteristics.


1992 ◽  
Vol 263 (6) ◽  
pp. C1200-C1207 ◽  
Author(s):  
U. Banderali ◽  
G. Roy

Large losses of amino acids by diffusion were previously observed in Madin-Darby canine kidney (MDCK) cells during volume regulation. Also, an outward rectifying anion channel was activated. Because this channel was not selective among anions, it was suggested that it could be permeable to amino acids. Its permeability to aspartate, glutamate, and taurine was studied using the patch-clamp technique in the inside-out configuration. Solutions containing 500 mM aspartate or glutamate were used on the cytoplasmic side of excised patches to detect single-channel currents carried by these anions. Permeability ratios were estimated in two different ways: 1) from the shift in reversal potential of current-voltage curves after anion replacement in the bath solution and 2) from comparisons of amplitudes of single-channel currents carried by tested anions and chloride, respectively. The values of aspartate-to-chloride and glutamate-to-chloride permeability ratios obtained with both methods were quite consistent and were of the order of 0.2 for both amino acids. Taurine in solutions at physiological pH 7.3 is a zwitterionic molecule and bears no net charge. To detect single-channel currents carried by taurine, solutions containing 500 mM taurine at pH 8.2 were used in inside-out experiments. Under these conditions 120 mM of negatively charged taurine was present in the solutions bathing the cytoplasmic side of excised patches. The permeability ratio estimated from the shift in reversal potential was 0.75. These results showed that some of the organic compounds released by cells during regulatory volume decrease could diffuse through this outwardly rectifying anionic channel.


1989 ◽  
Vol 257 (1) ◽  
pp. C77-C85 ◽  
Author(s):  
E. K. Gallin

Cell-attached patch studies of cultured human macrophages demonstrate that exposure to ionomycin induces inward-rectifying single-channel currents that differ from the voltage-dependent 28 pS inward-rectifying K currents previously described in these cells (J. Membr. Biol. 103: 55-66, 1988). With 150 mM KCl in the electrode and NaCl Hanks' solution in the bath, the ionomycin-induced single-channel conductance for inward currents was 37 pS, and the reversal potential was 57 mV. Channel activity was often associated with a shift in the base-line current level indicating that the cell membrane potential hyperpolarized. The ability of ionomycin to induce channel activity depended on extracellular [Ca] supporting the view that the channels were gated by calcium. Ionomycin-induced channels were permeable to K, relatively impermeable to Cl or Na, exhibited bursting kinetics, and had no apparent voltage dependence. Barium (3 mM in the patch electrode) did not significantly block the ionomycin-induced channel at rest but blocked channel activity when the patch was hyperpolarized beyond the resting membrane potential. Exposure of macrophages to platelet-activating factor, which is known to increase intracellular [Ca] [( Ca]i) (J. Cell Biol. 103: 439-450, 1986), also transiently induced channel activity. In excised patches with 3 microM [Ca]i bursting inward-rectifying channels with a 41 pS conductance were noted that probably correspond to the ionomycin-induced channels present in cell-attached patches. Increasing [Ca]i from 10(-8) to 3 x 10(-6) M induced inward-rectifying channel activity in previously quiescent excised patches.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1986 ◽  
Vol 251 (1) ◽  
pp. C85-C89 ◽  
Author(s):  
N. W. Richards ◽  
D. C. Dawson

The patch-clamp technique for recording single-channel currents across cell membranes was applied to single turtle colon epithelial cells isolated with hyaluronidase. With electrodes fabricated from Corning #7052 glass, high-resistance seals were consistently formed to these cells. In on-cell patches with low K (2.5 mM) in the pipette and high K (114.5 mM) in the bath, outward K currents were recorded that had a slope conductance of 17 pS and a reversal potential greater than -70 mV. Currents through this K channel were blocked by lidocaine, quinidine, and barium. These agents also block a cell swelling-induced K conductance identified by macroscopic current measurements in the basolateral membranes of the intact colonic epithelium, suggesting that the 17 pS K channel identified by single-channel recording in isolated turtle colon cells may be responsible for this macroscopically defined K conductance.


2000 ◽  
Vol 278 (2) ◽  
pp. H548-H557 ◽  
Author(s):  
Tao Zeng ◽  
Glenna C. L. Bett ◽  
Frederick Sachs

Mechanoelectric transduction can initiate cardiac arrhythmias. To examine the origins of this effect at the cellular level, we made whole cell voltage-clamp recordings from acutely isolated rat ventricular myocytes under controlled strain. Longitudinal stretch elicited noninactivating inward cationic currents that increased the action potential duration. These stretch-activated currents could be blocked by 100 μM Gd3+ but not by octanol. The current-voltage relationship was nearly linear, with a reversal potential of approximately −6 mV in normal Tyrode solution. Current density varied with sarcomere length (SL) according to I (pA/pF) = 8.3 − 5.0SL (μm). Repeated attempts to record single channel currents from stretch-activated ion channels failed, in accord with the absence of such data from the literature. The inability to record single channel currents may be a result of channels being located on internal membranes such as the T tubules or, possibly, inactivation of the channels by the mechanics of patch formation.


1996 ◽  
Vol 270 (1) ◽  
pp. C138-C147 ◽  
Author(s):  
R. S. Fisher ◽  
F. G. Grillo ◽  
S. Sariban-Sohraby

Brefeldin A (BFA) is used to probe trafficking of proteins through the central vacuolar system (CVS) in a variety of cells. Transepithelial Na+ transport by high-resistance epithelia, such as A6 cultured cells, is inhibited by BFA. Apical Na+ channels, as well as basolateral pumps and K+ channels, are complex proteins that probably traverse the CVS for routing to the plasma membrane. BFA (5 micrograms/ml) decreases transepithelial Na+ current near zero and increases resistance reversibly after 4 h. Longer exposures are toxic. When tissues were treated for 20 h with 0.2 microgram/ml BFA, Na+ transport also was reversibly inhibited. Using noise analysis, we found that BFA drastically reduced apical Na+ channel density. The increase in single channel current was consistent with cell hyperpolarization. After apical permeabilization with nystatin, changes in transepithelial current reflect changes in basolateral membrane transport. Transport at this membrane was inhibited by ouabain and cycloheximide, but not by BFA. After BFA, aldosterone was ineffective, suggesting that an intact CVS is required for stimulation by this hormone. Thus BFA inhibition of Na+ transport is localized at the apical membrane. Implications for channel turnover as a mechanism for regulating the Na+ transport rate are discussed.


2005 ◽  
Vol 289 (1) ◽  
pp. F117-F126 ◽  
Author(s):  
Daniel A. Gray ◽  
Gustavo Frindt ◽  
Lawrence G. Palmer

Outward and inward currents through single small-conductance K+ (SK) channels were measured in cell-attached patches of the apical membrane of principal cells of the rat cortical collecting duct (CCD). Currents showed mild inward rectification with high [K+] in the pipette (Kp+), which decreased as Kp+ was lowered. Inward conductances had a hyperbolic dependence on Kp+ with half-maximal conductance at ∼20 mM. Outward conductances, measured near the reversal potential, also increased with Kp+ from 15 pS (Kp+ = 0) to 50 pS (Kp+ = 134 mM). SK channel density was measured as the number of conducting channels per patch in cell-attached patches. As reported previously, channel density increased when animals were on a high-K diet for 7 days. Addition of 8-cpt-cAMP to the bath at least 5 min before making a seal increased SK channel density to an even greater extent, although this increase was not additive with the effect of a high-K diet. In contrast, increases in Na channel activity, assessed as the whole cell amiloride-sensitive current, due to K loading and 8-cpt-cAMP treatment were additive. Single-channel conductances and channel densities were used as inputs to a simple mathematical model of the CCD to predict rates of transepithelial Na+ and K+ transport as a function of apical Na+ permeability and K+ conductance, basolateral pump rates and K+ conductance, and the paracellular conductance. With measured values for these parameters, the model predicted transport rates that were in good agreement with values measured in isolated, perfused tubules. The number and properties of SK channels account for K+ transport by the CCD under all physiological conditions tested.


1997 ◽  
Vol 110 (5) ◽  
pp. 485-502 ◽  
Author(s):  
Louis S. Premkumar ◽  
Anthony Auerbach

Single-channel currents were recorded from mouse NR1-NR2B (ζ-ε2) receptors containing mixtures of wild-type and mutant subunits expressed in Xenopus oocytes. Mutant subunits had an asparagine-to-glutamine (N-to-Q) mutation at the N0 site of the M2 segment (NR1:598, NR2B:589). Receptors with pure N or Q NR1 and NR2 subunits generated single-channel currents with distinctive current patterns. Based on main and sublevel amplitudes, occupancy probabilities, and lifetimes, four patterns of current were identified, corresponding to receptors with the following subunit compositions (NR1/NR2): N/N, N/Q, Q/N, and Q/Q. Only one current pattern was apparent for each composition. When a mixture of N and Q NR2 subunits was coexpressed with pure mutant NR1 subunits, three single-channel current patterns were apparent. One pattern was the same as Q/Q receptors and another was the same as Q/N receptors. The third, novel pattern presumably arose from hybrid receptors having both N and Q NR2 subunits. When a mixture of N and Q NR1 subunits was coexpressed with pure mutant NR2 subunits, six single-channel current patterns were apparent. One pattern was the same as Q/Q receptors and another was the same as N/Q receptors. The four novel patterns presumably arose from hybrid receptors having both N and Q NR1 subunits. The relative frequency of NR1 hybrid receptor current patterns depended on the relative amounts of Q and N subunits that were injected into the oocytes. The number of hybrid receptor patterns suggests that there are two NR2 subunits per receptor and is consistent with either three or five NR1 subunits per receptor, depending on whether or not the order of mutant and wild-type subunits influences the current pattern. When considered in relation to other studies, the most straightforward interpretation of the results is that N-methyl-d-aspartate receptors are pentamers composed of three NR1 and two NR2 subunits.


2005 ◽  
Vol 126 (4) ◽  
pp. 339-352 ◽  
Author(s):  
Adedotun Adebamiro ◽  
Yi Cheng ◽  
John P. Johnson ◽  
Robert J. Bridges

Endogenous serine proteases have been reported to control the reabsorption of Na+ by kidney- and lung-derived epithelial cells via stimulation of electrogenic Na+ transport mediated by the epithelial Na+ channel (ENaC). In this study we investigated the effects of aprotinin on ENaC single channel properties using transepithelial fluctuation analysis in the amphibian kidney epithelium, A6. Aprotinin caused a time- and concentration-dependent inhibition (84 ± 10.5%) in the amiloride-sensitive sodium transport (INa) with a time constant of 18 min and half maximal inhibition constant of 1 μM. Analysis of amiloride analogue blocker–induced fluctuations in INa showed linear rate–concentration plots with identical blocker on and off rates in control and aprotinin-inhibited conditions. Verification of open-block kinetics allowed for the use of a pulse protocol method (Helman, S.I., X. Liu, K. Baldwin, B.L. Blazer-Yost, and W.J. Els. 1998. Am. J. Physiol. 274:C947–C957) to study the same cells under different conditions as well as the reversibility of the aprotinin effect on single channel properties. Aprotinin caused reversible changes in all three single channel properties but only the change in the number of open channels was consistent with the inhibition of INa. A 50% decrease in INa was accompanied by 50% increases in the single channel current and open probability but an 80% decrease in the number of open channels. Washout of aprotinin led to a time-dependent restoration of INa as well as the single channel properties to the control, pre-aprotinin, values. We conclude that protease regulation of INa is mediated by changes in the number of open channels in the apical membrane. The increase in the single channel current caused by protease inhibition can be explained by a hyperpolarization of the apical membrane potential as active Na+ channels are retrieved. The paradoxical increase in channel open probability caused by protease inhibition will require further investigation but does suggest a potential compensatory regulatory mechanism to maintain INa at some minimal threshold value.


Sign in / Sign up

Export Citation Format

Share Document