EphrinB2 induces pelvic-urethra reflex potentiation via Src kinase-dependent tyrosine phosphorylation of NR2B

2011 ◽  
Vol 300 (2) ◽  
pp. F403-F411 ◽  
Author(s):  
Hsi-Chin Wu ◽  
Chao-Hsiang Chang ◽  
Hsien-Yu Peng ◽  
Gin-Den Chen ◽  
Cheng-Yuang Lai ◽  
...  

Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in pain-related neural plasticity at the spinal cord level have been identified. To test whether Src-family tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate pelvic-urethra reflex potentiation, we recorded external urethra sphincter electromyogram reflex activity and analyzed protein expression in the lumbosacral (L6-S2) dorsal horn in response to intrathecal ephrinB2 injections. When compared with vehicle solution, exogenous ephrinB2 (5 μg/rat it)-induced reflex potentiation, in associated with phosphorylation of EphB1/2, Src-family kinase, NR2B Y1336 and Y1472 tyrosine residues. Both intrathecal EphB1 and EphB2 immunoglobulin fusion protein (both 10 μg/rat it) prevented ephrinB2-dependent reflex potentiation, as well as protein phosphorylation. Pretreatment with PP2 (50 μM, 10 μl it), an Src-family kinase antagonist, reversed the reflex potentiation, as well as Src kinase and NR2B phosphorylation. Together, these results suggest the ephrinB2-dependent EphBR activation, which subsequently provokes Src kinase-mediated N-methyl-d-aspartate receptor NR2B phosphorylation in the lumbosacral dorsal horn, is crucial for the induction of spinal reflex potentiation contributing to the development of visceral pain and/or hyperalgesia in the pelvic area.

2010 ◽  
Vol 298 (1) ◽  
pp. F109-F117 ◽  
Author(s):  
Hsien-Yu Peng ◽  
Gin-Den Chen ◽  
Cheng-Hung Lai ◽  
Kwong-Chung Tung ◽  
Junn-Liang Chang ◽  
...  

Recently, the role of EphB receptor (EphBR) tyrosine kinase and their ephrinB ligands in spinal pain-related neural plasticity has been identified. To test whether Src-family non-receptor tyrosine kinase-dependent glutamatergic N-methyl-d-aspartate receptor (NMDAR) NR2B subunit phosphorylation underlies lumbosacral spinal EphBR activation to mediate cross-organ sensitization between the colon and the urethra, external urethra sphincter electromyogram activity evoked by pelvic nerve stimulation and protein expression in the lumbosacral (L6–S2) dorsal horn were studied before and after intracolonic mustard oil (MO) instillation. We found MO instillation produced colon-urethra reflex sensitization along with an upregulation of endogenous ephrinB2 expression as well as phosphorylation of EphB1/2, Src-family kinase, and NR2B tyrosine residues. Intrathecal immunoglobulin fusion protein of EphB1 and EphB2 as well as PP2 reversed the reflex sensitization and NR2B phosphorylation caused by MO. All these results suggest that EphBR-ephrinB interactions, which provoke Src-family kinase-dependent NMDAR NR2B phosphorylation at the lumbosacral spinal cord level, are involved in cross-organ sensitization, contributing to the development of viscero-visceral referred pain between the bowel and the urethra.


2011 ◽  
Vol 300 (3) ◽  
pp. F692-F699 ◽  
Author(s):  
Chao-Hsiang Chang ◽  
Hsien-Yu Peng ◽  
Hsi-Chin Wu ◽  
Cheng-Yuan Lai ◽  
Ming-Chun Hsieh ◽  
...  

It is well-established that cyclophosphamide (CYP) can sensitize the pelvic afferent nerve arising from the urinary bladder and therefore induce suprapubic pain. To test the possibility that CYP might mediate the development of visceral hypereflexia/hyperalgesia by facilitating spinal activity-dependent neural plasticity, we compared the pelvic-urethra reflex activity and spinal N-methyl-d-aspartate receptor NR2B subunit (NR2B) phosphorylation in rats treated with vehicle solution and CYP. Compared with vehicle solution, when accompanied by upregulation of phosphorylated NR2B expression in the lumbosacral (L6–S2) dorsal horn, CYP increased the evoked spikes in spinal reflex potentiation induced by repetitive stimulation (1 stimulation/1 s). Moreover, intraperitoneal pretreatments with NG-nitro-l-arginine methyl ester and roscovitine, nitric oxide synthase and cyclin-dependent protein kinase 5 (Cdk5) antagonists, respectively, overwrote CYP-enhanced reflex potentiation and NR2B phosphorylation. When compared with the untreated group, the treatment with small-interfering RNA of NR2B, which decreased the expression of NR2B expression, abolished CYP-dependent reflex facilitation and spinal NR2B phosphorylation. These results suggested that CYP might facilitate spinal reflex potentiation mediated by N-methyl-d-aspartate receptors and participate in the development of visceral hypereflexia/hyperalgesia through nitric oxide- and Cdk5-dependent NR2B phosphorylation at the lumbosacral dorsal horn.


1992 ◽  
Vol 12 (10) ◽  
pp. 4706-4713
Author(s):  
H Sabe ◽  
M Okada ◽  
H Nakagawa ◽  
H Hanafusa

The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.


2008 ◽  
Vol 109 (5) ◽  
pp. 879-889 ◽  
Author(s):  
Dae-Hyun Roh ◽  
Hyun-Woo Kim ◽  
Seo-Yeon Yoon ◽  
Hyoung-Sig Seo ◽  
Young-Bae Kwon ◽  
...  

Background Selective blockade of spinal sigma(1) receptors (Sig-1R) suppresses nociceptive behaviors in the mouse formalin test. The current study was designed to verify whether intrathecal Sig-1R antagonists can also suppress chronic neuropathic pain. Methods Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in rats. The Sig-1R antagonist BD1047 was administered intrathecally twice daily from postoperative days 0 to 5 (induction phase of neuropathic pain) or from days 15 to 20 (maintenance phase). Western blot and immunohistochemistry were performed to determine changes in Sig-1R expression and to examine the effect of BD1047 on N-methyl-D-aspartate receptor subunit 1 expression and phosphorylation in spinal cord dorsal horn from neuropathic rats. Results BD1047 administered on postoperative days 0-5 significantly attenuated CCI-induced mechanical allodynia, but not thermal hyperalgesia, and this suppression was blocked by intrathecal administration of the Sig-1R agonist PRE084. In contrast, BD1047 treatment during the maintenance phase of neuropathic pain had no effect on mechanical allodynia. Sig-1R expression significantly increased in the ipsilateral spinal cord dorsal horn from days 1 to 3 after CCI. Importantly, BD1047 (30 nmol) administered intrathecally during the induction, but not the maintenance phase, blocked the CCI-induced increase in N-methyl-D-aspartate receptor subunit 1 expression and phosphorylation. Conclusions These results demonstrate that spinal Sig-1Rs play a critical role in both the induction of mechanical allodynia and the activation of spinal N-methyl-d-aspartate receptors in CCI rats and suggest a potential therapeutic role for the use of Sig-1R antagonists in the clinical management of neuropathic pain.


1999 ◽  
Vol 260 (2) ◽  
pp. 89-92 ◽  
Author(s):  
Takahiro Ushida ◽  
Toshikazu Tani ◽  
Motohiro Kawasaki ◽  
Osamu Iwatsu ◽  
Hiroshi Yamamoto

2000 ◽  
Vol 60 (7) ◽  
pp. 885-898 ◽  
Author(s):  
Alan J Kraker ◽  
Brian G Hartl ◽  
Aneesa M Amar ◽  
Mark R Barvian ◽  
H.D.Hollis Showalter ◽  
...  

2017 ◽  
Vol 292 (45) ◽  
pp. 18518-18529 ◽  
Author(s):  
Barbara Taskinen ◽  
Evandro Ferrada ◽  
Douglas M. Fowler

2003 ◽  
Vol 370 (2) ◽  
pp. 687-694 ◽  
Author(s):  
Fredrik MELANDER ◽  
Tommy ANDERSSON ◽  
Karim DIB

An early and critical event in β2 integrin signalling during neutrophil adhesion is activation of Src tyrosine kinases and Syk. In the present study, we report Src kinase-dependent β2 integrin-induced tyrosine phosphorylation of Cbl occurring in parallel with increased Cbl-associated tyrosine kinase activity. These events concurred with activation of Fgr and, surprisingly, also with dissociation of this Src tyrosine kinase from Cbl. Moreover, the presence of the Src kinase inhibitor PP1 in an in vitro assay had only a limited effect on the Cbl-associated kinase activity. These results suggest that an additional active Src-dependent tyrosine kinase associates with Cbl. The following observations imply that Syk is such a kinase: (i) β2 integrins activated Syk in a Src-dependent manner, (ii) Syk was associated with Cbl much longer than Fgr was, and (iii) the Syk inhibitor piceatannol (3,4,3′,5′-tetrahydroxy-trans-stilbene) abolished the Cbl-associated kinase activity in an in vitro assay. Effects of the mentioned interactions between these two kinases and Cbl may be related to the finding that Cbl is a ubiquitin E3 ligase. Indeed, we detected β2 integrin-induced ubiquitination of Fgr that, similar to the phosphorylation of Cbl, was abolished in cells pretreated with PP1. However, the ubiquitination of Fgr did not cause any apparent degradation of the protein. In contrast with Fgr, Syk was not modified by the E3 ligase. Thus Cbl appears to be essential in β2 integrin signalling, first by serving as a matrix for a subsequent agonist-induced signalling interaction between Fgr and Syk, and then by mediating ubiquitination of Fgr which possibly affects its interaction with Cbl.


Sign in / Sign up

Export Citation Format

Share Document