scholarly journals A mathematical model of the rat kidney: K+-induced natriuresis

2017 ◽  
Vol 312 (6) ◽  
pp. F925-F950 ◽  
Author(s):  
Alan M. Weinstein

A model of the rat nephron (Weinstein. Am J Physiol Renal Physiol 308: F1098–F1118, 2015) has been extended with addition of medullary vasculature. Blood vessels contain solutes from the nephron model, plus additional species from the model of Atherton et al. ( Am J Physiol Renal Fluid Electrolyte Physiol 247: F61–F72, 1984), representing hemoglobin buffering. In contrast to prior models of the urine-concentrating mechanism, reflection coefficients for DVR are near zero. Model unknowns are initial proximal tubule pressures and flows, connecting tubule pressure, and medullary interstitial pressures and concentrations. The model predicts outer medullary (OM) interstitial gradients for Na+, K+, CO2, and [Formula: see text], such that at OM-IM junction, the respective concentrations relative to plasma are 1.2, 3.0, 2.7, and 8.0; within IM, there is high urea and low [Formula: see text], with concentration ratios of 11 and 0.5 near the papillary tip. Quantitative similarities are noted between K+and urea handling (medullary delivery and permeabilities). The model K+gradient is physiologic, and the urea gradient is steeper due to restriction of urea permeability to distal collecting duct. Nevertheless, the predicted urea gradient is less than expected, suggesting reconsideration of proposals of an unrecognized reabsorptive urea flux. When plasma K+is increased from 5.0 to 5.5 mM, Na+and K+excretion increase 2.3- and 1.3-fold, respectively. The natriuresis derives from a 3.3% decrease in proximal Na+reabsorption and occurs despite delivery-driven increases in Na+reabsorption in distal segments; kaliuresis derives from a 30% increase in connecting tubule Na+delivery. Thus this model favors the importance of proximal over distal events in K+-induced diuresis.

2011 ◽  
Vol 300 (2) ◽  
pp. F372-F384 ◽  
Author(s):  
Anita T. Layton

In a companion study [Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Am J Physiol Renal Physiol. (First published November 10, 2010). 10.1152/ajprenal.00203.2010] a region-based mathematical model was formulated for the urine concentrating mechanism in the renal medulla of the rat kidney. In the present study, we investigated model sensitivity to some of the fundamental structural assumptions. An unexpected finding is that the concentrating capability of this region-based model falls short of the capability of models that have radially homogeneous interstitial fluid at each level of only the inner medulla (IM) or of both the outer medulla and IM, but are otherwise analogous to the region-based model. Nonetheless, model results reveal the functional significance of several aspects of tubular segmentation and heterogeneity: 1) the exclusion of ascending thin limbs that reach into the deep IM from the collecting duct clusters in the upper IM promotes urea cycling within the IM; 2) the high urea permeability of the lower IM thin limb segments allows their tubular fluid urea content to equilibrate with the surrounding interstitium; 3) the aquaporin-1-null terminal descending limb segments prevent water entry and maintain the transepithelial NaCl concentration gradient; 4) a higher thick ascending limb Na+ active transport rate in the inner stripe augments concentrating capability without a corresponding increase in energy expenditure for transport; 5) active Na+ reabsorption from the collecting duct elevates its tubular fluid urea concentration. Model calculations predict that these aspects of tubular segmentation and heterogeneity promote effective urine concentrating functions.


2001 ◽  
Vol 12 (9) ◽  
pp. 1795-1804
Author(s):  
YOUNG-HEE KIM ◽  
JAE-HO EARM ◽  
TONGHUI MA ◽  
ALAN S. VERKMAN ◽  
MARK A. KNEPPER ◽  
...  

Abstract. Aquaporin-4 (AQP4) is a member of the aquaporin water-channel family. AQP4 is expressed primarily in the brain, but it is also present in the collecting duct of the kidney, where it is located in the basolateral plasma membrane of principal cells and inner medullary collecting duct (IMCD) cells. Recent studies in the mouse also have reported the presence of AQP4 in the basolateral membrane of the proximal tubule. The purpose of this study was to establish the pattern of AQP4 expression during kidney development and in the adult kidney of both the mouse and the rat. Kidneys of adult and 3-, 7-, and 15-d-old mice and rats were preserved for immunohistochemistry and processed using a peroxidase pre-embedding technique. In both the mouse and the rat, strong basolateral immunostaining was observed in IMCD cells and principal cells in the medullary collecting duct at all ages examined. Labeling was weaker in the cortical collecting duct and the connecting tubule, and there was no labeling of connecting tubule cells in the mouse. In adult mouse kidney, strong AQP4 immunoreactivity was observed in the S3 segment of the proximal tubule. However, there was little or no labeling in the cortex or around the corticomedullary junction in 3- and 7-d-old mice. Between 7 and 15 d of age, distinct AQP4 immunoreactivity appeared in the S3 segment of the mouse proximal tubule concomitant with the differentiation of this segment of the nephron. Labeling of proximal tubules was never observed in the rat kidney. These results suggest that there are differences in transepithelial water transport between mouse and rat or that additional, not yet identified water channels exist in the rat proximal tubule.


1990 ◽  
Vol 259 (2) ◽  
pp. C286-C294 ◽  
Author(s):  
B. Thorens ◽  
H. F. Lodish ◽  
D. Brown

The localization of two glucose transporter isoforms was mapped in the rat kidney: the high-Michaelis constant (Km; 15-20 mM) low-affinity "liver" transporter and the low-Km (1-2 mM) high-affinity "erythroid/brain" transporter. Both are basolateral membrane proteins, but the liver transporter was present exclusively in the S1 part of the proximal tubule, whereas the erythroid/brain transporter was expressed at variable levels in different nephron segments. Staining intensity was low in the straight proximal tubule (S3), intermediate in the medullary thin and thick ascending limbs, and highest in connecting segments and collecting ducts. In the collecting duct, the erythroid/brain glucose transporter was expressed at the highest level in intercalated cells; less was present in principal cells. In the papilla, only intercalated cells expressed this transporter isoform. These results suggest specific involvements of each transporter isoform in transepithelial glucose reabsorption by different segments of the proximal tubule. They also indicate that while the liver glucose transporter is present in gluconeogenic cells, there is a good correlation between the level of expression of the erythroid/brain glucose transporter and the glycolytic activity of the different nephron segments.


2001 ◽  
Vol 280 (1) ◽  
pp. C192-C198 ◽  
Author(s):  
James B. Wade ◽  
Paul A. Welling ◽  
Mark Donowitz ◽  
Shirish Shenolikar ◽  
Edward J. Weinman

Na+/H+ exchanger regulatory factor (NHERF) and NHERF2 are PDZ motif proteins that mediate the inhibitory effect of cAMP on Na+/H+ exchanger 3 (NHE3) by facilitating the formation of a multiprotein signaling complex. With the use of antibodies specific for NHERF and NHERF2, immunocytochemical analysis of rat kidney was undertaken to determine the nephron distribution of both proteins and their colocalization with other transporters and with ezrin. NHERF was most abundant in apical membrane of proximal tubule cells, where it colocalized with ezrin and NHE3. NHERF2 was detected in the glomerulus and in other renal vascular structures. In addition, NHERF2 was strongly expressed in collecting duct principal cells, where it colocalized with ROMK. These results indicate a striking difference in the nephron distribution of NHERF and NHERF2 and suggests NHERF is most likely to be the relevant biological regulator of NHE3 in the proximal tubule, while NHERF2 may interact with ROMK or other targets in the collecting duct. The finding that NHERF isoforms occur in different cell types suggests that NHERF and NHERF2 may subserve different functions in the kidney.


1993 ◽  
Vol 120 (2) ◽  
pp. 359-369 ◽  
Author(s):  
R Zhang ◽  
W Skach ◽  
H Hasegawa ◽  
A N van Hoek ◽  
A S Verkman

The localization and transporting properties of a kidney protein homologous to human erythrocyte protein CHIP28 was evaluated. The cDNA encoding rat kidney protein CHIP28k was isolated from a rat renal cortex cDNA library. A 2.8-kb cDNA was identified which contained an 807 bp open reading frame encoding a 28.8 kD protein with 94% amino acid identity to CHIP28. in vitro translation of CHIP28k cDNA in rabbit reticulocyte lysate generated a 28-kD protein; addition of ER-derived microsomes gave a 32-kD transmembrane glycoprotein. Translation of truncated RNA demonstrated glycosylation of residue Asn42 which is predicted to lie between the first and second transmembrane domains. Expression of in vitro transcribed mRNA encoding CHIP28k in Xenopus oocytes increased oocyte osmotic water permeability (Pf) from (4 +/- 1) x 10(-4) to (33 +/- 4) x 10(-4) cm/s at 10 degrees C; the increase in oocyte Pf was weakly temperature dependent and inhibited by HgCl2. Two-electrode voltage clamp measurements indicated that CHIP28k was not permeable to ions. Oocyte Pf also increased with expression of total mRNA from kidney cortex and papilla; the increase in Pf with mRNA from cortex, but not kidney papilla, was blocked by coinjection with excess antisense CHIP28k cRNA. In situ hybridization of a 150 base cRNA antisense probe to tissue sections from rat kidney showed selective CHIP28k localization to epithelial cells in proximal tubule and thin descending limb of Henle. Pf in purified apical membrane vesicles from rat and human proximal tubule, and in proteoliposomes reconstituted with purified protein, was very high and inhibited by HgCl2; stripping of apical vesicles with N-lauroylsarcosine enriched a 28-kD protein by 25-fold and yielded a vesicle population with high water, but low urea and proton permeabilities. CHIP28k identity was confirmed by NH2-terminus sequence analysis. These results indicate that CHIP28k is a major and highly selective water transporting protein in the kidney proximal tubule and thin descending limb of Henle, but not collecting duct.


2007 ◽  
Vol 293 (1) ◽  
pp. F416-F427 ◽  
Author(s):  
Nilufar Mohebbi ◽  
Jana Kovacikova ◽  
Marta Nowik ◽  
Carsten A. Wagner

Hypothyroidism in humans is associated with incomplete distal renal tubular acidosis, presenting as the inability to respond appropriately to an acid challenge by excreting less acid. Here, we induced hypothyroidism in rats with methimazole (HYPO) and in one group substituted with l-thyroxine (EU). After 4 wk, acid-base status was similar in both groups. However, after 24 h acid loading with NH4Cl HYPO rats displayed a more pronounced metabolic acidosis. The expression of the Na+/H+ exchanger NHE3, the Na+-phosphate cotransporter NaPi-IIa, and the B2 subunit of the vacuolar H+-ATPase was reduced in the brush-border membrane of the proximal tubule of the HYPO group, paralleled by a lower abundance of the Na+/HCO3− cotransporter NBCe1 and a higher expression of the acid-secretory type A intercalated cell-specific Cl−/HCO3− exchanger AE1. In contrast to control conditions, the expression of NBCe1 was increased in the HYPO group during metabolic acidosis. In addition, net acid excretion was similar in both groups. The relative number of type A intercalated cells was increased in the connecting tubule and cortical collecting duct of the HYPO group during acidosis. Thus thyroid hormones modulate the renal response to an acid challenge and alter the expression of several key acid-base transporters. Mild hypothyroidism is associated only with a very mild defect in renal acid handling, which appears to be mainly located in the proximal tubule and is compensated by the distal nephron.


2005 ◽  
Vol 289 (6) ◽  
pp. F1346-F1366 ◽  
Author(s):  
Anita T. Layton ◽  
Harold E. Layton

We have developed a highly detailed mathematical model for the urine concentrating mechanism (UCM) of the rat kidney outer medulla (OM). The model simulates preferential interactions among tubules and vessels by representing four concentric regions that are centered on a vascular bundle; tubules and vessels, or fractions thereof, are assigned to anatomically appropriate regions. Model parameters, which are based on the experimental literature, include transepithelial transport properties of short descending limbs inferred from immunohistochemical localization studies. The model equations, which are based on conservation of solutes and water and on standard expressions for transmural transport, were solved to steady state. Model simulations predict significantly differing interstitial NaCl and urea concentrations in adjoining regions. Active NaCl transport from thick ascending limbs (TALs), at rates inferred from the physiological literature, resulted in model osmolality profiles along the OM that are consistent with tissue slice experiments. TAL luminal NaCl concentrations at the corticomedullary boundary are consistent with tubuloglomerular feedback function. The model exhibited solute exchange, cycling, and sequestration patterns (in tubules, vessels, and regions) that are generally consistent with predictions in the physiological literature, including significant urea addition from long ascending vasa recta to inner-stripe short descending limbs. In a companion study (Layton AT and Layton HE. Am J Physiol Renal Physiol 289: F1367–F1381, 2005), the impact of model assumptions, medullary anatomy, and tubular segmentation on the UCM was investigated by means of extensive parameter studies.


2011 ◽  
Vol 300 (2) ◽  
pp. F356-F371 ◽  
Author(s):  
Anita T. Layton

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a collecting duct cluster in the inner medulla (IM). Particularly noteworthy features of this model include highly urea-permeable and water-impermeable segments of the long descending limbs and highly urea-permeable ascending thin limbs. Indeed, this is the first detailed mathematical model of the rat urine concentrating mechanism that represents high long-loop urea permeabilities and that produces a substantial axial osmolality gradient in the IM. That axial osmolality gradient is attributable to the increasing urea concentration gradient. The model equations, which are based on conservation of solutes and water and on standard expressions for transmural transport, were solved to steady state. Model simulations predict that the interstitial NaCl and urea concentrations in adjoining regions differ substantially in the OM but not in the IM. In the OM, active NaCl transport from thick ascending limbs, at rates inferred from the physiological literature, resulted in a concentrating effect such that the intratubular fluid osmolality of the collecting duct increases ∼2.5 times along the OM. As a result of the separation of urea from NaCl and the subsequent mixing of that urea and NaCl in the interstitium and vasculature of the IM, collecting duct fluid osmolality further increases by a factor of ∼1.55 along the IM.


2001 ◽  
Vol 280 (2) ◽  
pp. F356-F364 ◽  
Author(s):  
Manoocher Soleimani ◽  
Tracey Greeley ◽  
Snezana Petrovic ◽  
Zhaohui Wang ◽  
Hassane Amlal ◽  
...  

The identities of the apical Cl−/base exchangers in kidney proximal tubule and cortical collecting duct (CCD) cells remain unknown. Pendrin (PDS), which is expressed at high levels in the thyroid and its mutation causes Pendred's syndrome, is shown to be an anion exchanger. We investigated the renal distribution of PDS and its function. Our results demonstrate that pendrin mRNA expression in the rat kidney is abundant and limited to the cortex. Proximal tubule suspensions isolated from kidney cortex were highly enriched in pendrin mRNA. Immunoblot analysis studies localized pendrin to cortical brush-border membranes. Nephron segment RT-PCR localized pendrin mRNA to proximal tubule and CCD. Expression studies in HEK-293 cells demonstrated that pendrin functions in the Cl−/OH−, Cl−/HCO3 −, and Cl−/formate exchange modes. The conclusion is that pendrin is an apical Cl−/base exchanger in the kidney proximal tubule and CCD and mediates Cl−/OH−, Cl−/HCO3 −, and Cl−/formate exchange.


Sign in / Sign up

Export Citation Format

Share Document