Transport and hydrolysis of glucagon in the proximal nephron

1986 ◽  
Vol 251 (3) ◽  
pp. F460-F467 ◽  
Author(s):  
D. R. Peterson ◽  
E. A. Green ◽  
S. Oparil ◽  
J. T. Hjelle

Transport and hydrolysis of glucagon in the rabbit proximal nephron were studied. Iodinated glucagon (0.34 +/- 0.02 pg/nl, mean +/- SE) was microperfused (16.0 +/- 1.1 nl/min) in vitro through proximal straight nephron segments for 30 min. Radiolabeled material, primarily 125I-tyrosine, appeared in the bathing medium in a linear fashion as a function of time (0.406 pg glucagon X mm tubule length-1 X min-1). Hydrolysis of glucagon by proximal tubule homogenates was pH dependent, with a large peak of activity observed at pH 7.0-7.4 and a smaller one at pH 3.0. Analytical cell fractionation studies of proximal tubule cells revealed glucagon-hydrolyzing activity associated with the brush border and cytosol at pH 7.4. Less than 3% of activity was found associated with the contraluminal membrane. Substantial catabolism was observed at lysosomes on lowering the pH to 5.0. Incubation of glucagon directly in the presence of isolated renal cortical microvilli confirmed the presence of a high-capacity glucagon-degrading hydrolase. In addition to glucagon-hydrolyzing activity associated with the proximal nephron, noncortical activity was observed that was not accounted for by proximal tubule hydrolases. The data suggest several mechanisms for renal extraction of glucagon, including hydrolysis by enzymes at the brush border of the proximal tubule, prior to reabsorption of metabolites there. Conversely, enzymes associated with the contraluminal membrane of the proximal nephron probably contribute little to its hydrolysis. Nonproximal extracortical degradation of glucagon may account for its previously observed peritubular hydrolysis.

2002 ◽  
Vol 13 (4) ◽  
pp. 918-927 ◽  
Author(s):  
Xiaojing Lou ◽  
Tammie McQuistan ◽  
Robert A. Orlando ◽  
Marilyn Gist Farquhar

ABSTRACT. Megalin is the most abundant endocytic receptor in the proximal tubule epithelium (PTE), where it is concentrated in clathrin-coated pits (CCPs) and vesicles in the brush border region. The heterotrimeric G protein alpha subunit, Gαi3, has also been localized to the brush border region of PTE. By immunofluorescence GIPC and GAIP, components of G protein-mediated signaling pathways, are also concentrated in the brush border region of PTE and are present in megalin-expressing cell lines. By cell fractionation, these signaling molecules cosediment with megalin in brush border and microvillar fractions. GAIP is found by immunoelectron microscopy in CCPs, and GIPC is found in CCPs and apical tubules of endocytic compartments in the renal brush border. In precipitation assays, GST-GIPC specifically binds megalin. The concentration of Gαi3, GIPC, and GAIP with megalin in endocytic compartments of the proximal tubule, where extensive endocytosis occurs, and the interaction between GIPC and the cytoplasmic tail of megalin suggest a model whereby G protein-mediated signaling may regulate megalin’s endocytic function and/or trafficking.


1997 ◽  
Vol 25 (5) ◽  
pp. 497-503
Author(s):  
Jean-Paul Morin ◽  
Marc E. De Broe ◽  
Walter Pfaller ◽  
Gabriele Schmuck

An ECVAM task force on nephrotoxicity has been established to advise, in particular, on the follow-up to recommendations made in the ECVAM workshop report on nephrotoxicity testing in vitro. Since this workshop was held, in 1994, there have been several improvements in the techniques used. For example, the duration of renal slice viability, and the maintenance of functional activities in slices, have been improved by using dynamic incubation systems with higher oxygen tensions and more-appropriate cell culture media. Highly differentiated primary cultures of pig, human and rabbit proximal tubule cells have been established by using specific cell isolation procedures and/or selective culture media. To date, the most comparable phenotypic expression and transepithelial transport capacities to proximal tubules in vivo have been obtained with primary cultures of rabbit proximal tubule cells which are grown on bicompartmental supports; in this system, transepithelial substrate gradients are generated and the transepithelial transport of both organic anions and cations is highly active. This in vitro system has been selected by ECVAM for further evaluation and prevalidation. Industrial needs in the area of nephrotoxicity testing have been identified, and recommendations are made at the end of this report concerning possible future initiatives.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Ryousuke Satou ◽  
Kathleen S Hering-Smith ◽  
L G Navar

In angiotensin II (Ang II)-dependent hypertension, intrarenal angiotensinogen (AGT) augmentation induced by Ang II and associated pathogenic factors including interleukin 6 (IL-6) cause further elevation of intratubular Ang II production, leading to the progression of hypertension and kidney injury. Recent studies have suggested that renal proximal straight tubules (S3 segment) are the main source of intrarenal AGT and that S1 and S2 segments do not express AGT mRNA under normal conditions. However, AGT expression and its regulation by Ang II and/or IL-6 in each proximal tubule segment have not been demonstrated an in vitro setting. The availability of specific cell lines derived from mouse S1, S2 and S3 segments provided an opportunity to decisively determine each segments’ capability to express AGT and respond to stimuli. Thus, this study was performed to determine AGT expression and its response to stimulation with Ang II and IL-6 in S1, S2 and S3 cell line. Basal AGT mRNA and protein levels were detected by RT-PCR and western blot analysis. Basal levels of Ang II type 1 receptor (AT1R) and STAT3, which is a transcription factor in IL-6 signaling pathway, were also measured. In addition, the cells were incubated with 100 nM Ang II and/or 400 nM IL-6 for 24 h. Basal AGT levels in S1 and S3 cells were lower than in mouse whole kidney (0.09-fold and 0.33-fold compared with mouse whole kidney). S2 cells exhibited the highest basal AGT levels (4.15-fold) among these cells. In S1 cells, AGT expression was stimulated by IL-6 (1.89 ± 0.32, ratio to control) and co-stimulation with Ang II and IL-6 (1.85 ± 0.28) although Ang II alone did not alter AGT levels. In S2 cells, only the co-stimulation increased AGT expression (1.35 ± 0.01). No changes were observed by similar treatments in S3 cells. Basal AT1R levels were lower in S3 than in S1 and S2 cells (0.97 ± 0.09 in S2, 0.32 ± 0.07 in S3, ratio to S1). S1 cells showed the highest basal levels of STAT3. Basal STAT3 levels in S3 cells were lower than that in S1 and S2 cells. These results indicate that S2 cells are main source of intrarenal AGT which can be augmented by Ang II and IL-6 during the development of Ang II-dependent hypertension. Furthermore, low basal levels of AT1R and STAT3 in S3 cells explain why these cells do not respond to Ang II and IL-6.


2005 ◽  
Vol 288 (3) ◽  
pp. F530-F538 ◽  
Author(s):  
Sunita Goyal ◽  
SueAnn Mentone ◽  
Peter S. Aronson

In situ hybridization studies demonstrated that Na+/H+ exchanger NHE8 is expressed in kidney proximal tubules. Although membrane fractionation studies suggested apical brush-border localization, precise membrane localization could not be definitively established. The goal of the present study was to develop isoform-specific NHE8 antibodies as a tool to directly establish the localization of NHE8 protein in the kidney by immunocytochemistry. Toward this goal, two sets of antibodies that label different NHE8 epitopes were developed. Monoclonal antibody 7A11 and polyclonal antibody Rab65 both specifically labeled NHE8 by Western blotting as well as by immunofluorescence microscopy. The immunolocalization pattern in the kidney seen with both antibodies was the same, thereby validating NHE8 specificity. In particular, NHE8 expression was observed on the apical brush-border membrane of all proximal tubules from S1 to S3. The most intense staining was evident in proximal tubules in the deeper cortex and medulla with a significant but somewhat weaker staining in superficial proximal tubules. Colocalization studies with γ-glutamyltranspeptidase and megalin indicated expression of NHE8 on both the microvillar surface membrane and the coated-pit region of proximal tubule cells, suggesting that NHE8 may be subject to endocytic retrieval and recycling. Although colocalizing in the proximal tubule with NHE3, no significant alteration in NHE8 protein expression was evident in NHE3-null mice. We conclude that NHE8 is expressed on the apical brush-border membrane of proximal tubule cells, where it may play a role in mediating or regulating ion transport in this nephron segment.


2002 ◽  
Vol 283 (4) ◽  
pp. C1155-C1162 ◽  
Author(s):  
Steven M. Grassl

Membrane transport pathways mediating transcellular secretion of urate across the proximal tubule were investigated in brush-border membrane vesicles (BBMV) isolated from avian kidney. An inside-positive K diffusion potential induced a conductive uptake of urate to levels exceeding equilibrium. Protonophore-induced dissipation of membrane potential significantly reduced voltage-driven urate uptake. Conductive uptake of urate was inhibitor sensitive, substrate specific, and a saturable function of urate concentration. Urate uptake was trans-stimulated by urate and cis-inhibited by p-aminohippurate (PAH). Conductive uptake of PAH was cis-inhibited by urate. Urate uptake was unaffected by an outward α-ketoglutarate gradient. In the absence of a membrane potential, urate uptake was similar in the presence and absence of an imposed inside-alkaline pH gradient or an outward Cl gradient. These observations suggest a uniporter-mediated facilitated diffusion of urate as a pathway for passive efflux across the brush border membrane of urate-secreting proximal tubule cells.


Sign in / Sign up

Export Citation Format

Share Document