Abstract 564: Differential Expression and Regulation of Angiotensinogen in Renal Proximal Tubule Cells From S1, S2 and S3 Segments

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Ryousuke Satou ◽  
Kathleen S Hering-Smith ◽  
L G Navar

In angiotensin II (Ang II)-dependent hypertension, intrarenal angiotensinogen (AGT) augmentation induced by Ang II and associated pathogenic factors including interleukin 6 (IL-6) cause further elevation of intratubular Ang II production, leading to the progression of hypertension and kidney injury. Recent studies have suggested that renal proximal straight tubules (S3 segment) are the main source of intrarenal AGT and that S1 and S2 segments do not express AGT mRNA under normal conditions. However, AGT expression and its regulation by Ang II and/or IL-6 in each proximal tubule segment have not been demonstrated an in vitro setting. The availability of specific cell lines derived from mouse S1, S2 and S3 segments provided an opportunity to decisively determine each segments’ capability to express AGT and respond to stimuli. Thus, this study was performed to determine AGT expression and its response to stimulation with Ang II and IL-6 in S1, S2 and S3 cell line. Basal AGT mRNA and protein levels were detected by RT-PCR and western blot analysis. Basal levels of Ang II type 1 receptor (AT1R) and STAT3, which is a transcription factor in IL-6 signaling pathway, were also measured. In addition, the cells were incubated with 100 nM Ang II and/or 400 nM IL-6 for 24 h. Basal AGT levels in S1 and S3 cells were lower than in mouse whole kidney (0.09-fold and 0.33-fold compared with mouse whole kidney). S2 cells exhibited the highest basal AGT levels (4.15-fold) among these cells. In S1 cells, AGT expression was stimulated by IL-6 (1.89 ± 0.32, ratio to control) and co-stimulation with Ang II and IL-6 (1.85 ± 0.28) although Ang II alone did not alter AGT levels. In S2 cells, only the co-stimulation increased AGT expression (1.35 ± 0.01). No changes were observed by similar treatments in S3 cells. Basal AT1R levels were lower in S3 than in S1 and S2 cells (0.97 ± 0.09 in S2, 0.32 ± 0.07 in S3, ratio to S1). S1 cells showed the highest basal levels of STAT3. Basal STAT3 levels in S3 cells were lower than that in S1 and S2 cells. These results indicate that S2 cells are main source of intrarenal AGT which can be augmented by Ang II and IL-6 during the development of Ang II-dependent hypertension. Furthermore, low basal levels of AT1R and STAT3 in S3 cells explain why these cells do not respond to Ang II and IL-6.

1997 ◽  
Vol 25 (5) ◽  
pp. 497-503
Author(s):  
Jean-Paul Morin ◽  
Marc E. De Broe ◽  
Walter Pfaller ◽  
Gabriele Schmuck

An ECVAM task force on nephrotoxicity has been established to advise, in particular, on the follow-up to recommendations made in the ECVAM workshop report on nephrotoxicity testing in vitro. Since this workshop was held, in 1994, there have been several improvements in the techniques used. For example, the duration of renal slice viability, and the maintenance of functional activities in slices, have been improved by using dynamic incubation systems with higher oxygen tensions and more-appropriate cell culture media. Highly differentiated primary cultures of pig, human and rabbit proximal tubule cells have been established by using specific cell isolation procedures and/or selective culture media. To date, the most comparable phenotypic expression and transepithelial transport capacities to proximal tubules in vivo have been obtained with primary cultures of rabbit proximal tubule cells which are grown on bicompartmental supports; in this system, transepithelial substrate gradients are generated and the transepithelial transport of both organic anions and cations is highly active. This in vitro system has been selected by ECVAM for further evaluation and prevalidation. Industrial needs in the area of nephrotoxicity testing have been identified, and recommendations are made at the end of this report concerning possible future initiatives.


2015 ◽  
Vol 308 (11) ◽  
pp. F1268-F1275 ◽  
Author(s):  
Yixin Su ◽  
Jianli Bi ◽  
Victor M. Pulgar ◽  
Jorge Figueroa ◽  
Mark Chappell ◽  
...  

We have shown a sex-specific effect of fetal programming on Na+ excretion in adult sheep. The site of this effect in the kidney is unknown. Therefore, we tested the hypothesis that renal proximal tubule cells (RPTCs) from adult male sheep exposed to betamethasone (Beta) before birth have greater Na+ uptake than do RPTCs from vehicle-exposed male sheep and that RPTCs from female sheep similarly exposed are not influenced by antenatal Beta. In isolated RPTCs from 1- to 1.5-yr-old male and female sheep, we measured Na+ uptake under basal conditions and after stimulation with ANG II. To gain insight into the mechanisms involved, we also measured nitric oxide (NO) levels, ANG II receptor mRNA levels, and expression of Na+/H+ exchanger 3. Basal Na+ uptake increased more in cells from Beta-exposed male sheep than in cells from vehicle-exposed male sheep (400% vs. 300%, P < 0.00001). ANG II-stimulated Na+ uptake was also greater in cells from Beta-exposed males. Beta exposure did not increase Na+ uptake by RPTCs from female sheep. NO production was suppressed more by ANG II in RPTCs from Beta-exposed males than in RPTCs from either vehicle-exposed male or female sheep. Our data suggest that one site of the sex-specific effect of Beta-induced fetal programming in the kidney is the RPTC and that the enhanced Na+ uptake induced by antenatal Beta in male RPTCs may be related to the suppression of NO in these cells.


2006 ◽  
Vol 290 (6) ◽  
pp. F1382-F1390 ◽  
Author(s):  
Jia L. Zhuo ◽  
Xiao C. Li ◽  
Jeffrey L. Garvin ◽  
L. Gabriel Navar ◽  
Oscar A. Carretero

Intracellular ANG II induces biological effects in nonrenal cells, but it is not known whether it plays a physiological role in renal proximal tubule cells (PTCs). PTCs express angiotensinogen, renin, and angiotensin-converting enzyme mRNAs, suggesting the presence of high levels of intracellular ANG II. We determined if microinjection of ANG II directly in single PTCs increases intracellular calcium concentration ([Ca2+]i) and, if so, elucidated the cellular mechanisms involved. Changes in [Ca2+]i responses were studied by fluorescence imaging using the Ca2+ indicator fluo 3. ANG II (1 nM) was microinjected directly in the cells, whereas cell-surface angiotensin type 1 (AT1) receptors were blocked by losartan (10 μM). When ANG II (1 nM) was added to the perfusate, there was a marked increase in [Ca2+]i that was blocked by extracellular losartan. With losartan in the perfusate, intracellular microinjection of ANG II elicited a robust increase in cytoplasmic [Ca2+]i that peaked at 30 s (basal: 2.2 ± 0.3 vs. ANG II: 14.9 ± 0.4 relative fluorescence units; P < 0.01). Chelation of extracellular Ca2+ with EGTA (2 mM) did not alter microinjected ANG II-induced [Ca2+]i responses (Ca2+ free + ANG II: 12.3 ± 2.6 relative fluorescence units, not significant vs. ANG II); however, pretreatment with thapsigargin to deplete intracellular Ca2+ stores or with U-73122 to inhibit phospholipase C (1 μM each) markedly attenuated microinjected ANG II-induced [Ca2+]i responses. Combined microinjection of ANG II and losartan abolished [Ca2+]i responses, whereas a combination of ANG II and PD-123319 had no effect. These data demonstrate for the first time that direct microinjection of ANG II in single PTCs increases [Ca2+]i by stimulating intracellular AT1 receptors and releases Ca2+ from intracellular stores, suggesting that intracellular ANG II may play a physiological role in PTC function.


2015 ◽  
Vol 29 (2) ◽  
pp. 289-298 ◽  
Author(s):  
J. Koči ◽  
B. Jeffery ◽  
J.E. Riviere ◽  
N.A. Monteiro-Riviere

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Linto Thomas ◽  
Jianxiang Xue ◽  
Jessica Dominguez Rieg ◽  
Timo Rieg

2002 ◽  
Vol 282 (4) ◽  
pp. F703-F709 ◽  
Author(s):  
Richard A. Girton ◽  
David P. Sundin ◽  
Mark E. Rosenberg

Clusterin is a heterodimeric secreted glycoprotein that is upregulated after acute renal injury. In aminoglycoside nephrotoxicity, clusterin is induced in the tubular epithelium and increased levels are found in the urine. In this study, we developed an in vitro model of gentamicin-induced cytotoxicity in renal proximal tubule cells and tested whether clusterin protected these cells from injury. LLC-PK1 cells were incubated with varying concentrations of gentamicin in serum-free media, and cytotoxicity was quantified by lactate dehydrogenase release and confirmed by vital dye exclusion. A dose-dependent increase in cytotoxicity occurred with gentamicin concentrations up to 27 mg/ml. Clusterin decreased cytotoxicity in a dose- and time-dependent manner at 6, 12, and 24 h, whereas albumin, used as a control protein, had no effect. In contrast to the aminoglycoside model, when cells were injured by depletion of ATP, clusterin had only a minimally protective effect. LLC-PK1 cells did not express megalin, a receptor that can mediate the uptake of both clusterin and aminoglycosides into proximal tubule cells. Uptake of gentamicin into LLC-PK1cells was observed despite the absence of megalin. In conclusion, clusterin specifically protects against gentamicin-induced renal tubular cell injury by a megalin-independent mechanism.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
John J Gildea ◽  
Peng Xu ◽  
Katie Schiermeyer ◽  
Wei Yue ◽  
Robin A Felder

Increased morbidity and mortality occurs in some individuals consuming low sodium diets. Inverse salt sensitivity (ISS) is the paradoxical increase in blood pressure of individuals to a low sodium diet. Our group previously reported decreased expression of dopamine type 2 receptor (D 2 R), increased expression Aminopeptidase N, and increased Ang II dependent sodium transport in human urine derived renal proximal tubule cells isolated from ISS participants. In an attempt to understand the increased Ang II sensitivity demonstrated in ISS cells, we examined angiotensin converting enzyme 2 (ACE2), a membrane associated enzyme involved in the metabolism of Ang II. Urine derived renal proximal tubule cells grown and immortalized from ISS participants were compared to cells from salt resistant (SR) participants cultured in iso-osmotic media with low salt (LS, 90 mM NaCl) normal salt (NS, 140 mM NaCl) and high salt (HS, 190 mM NaCl). Cells were incubated in LS, NS, and HS media with and without losartan (LOS,1 μM) overnight (18 hours) and ACE2 expression levels determined by in-cell western blot. A monoclonal antibody specific to an extracellular epitope of ACE2 was used as the primary antibody and an Alexa-647 anti-mouse secondary antibody. ACE2 expression was only reduced in ISS cells in LS condition (28.7±2.1 % reduction, ISS LS vs SR LS, N=4 per group, p<0.05). Addition of losartan completely blocked the decrease in ACE2 expression in low salt conditions in ISS in urine derived human renal proximal tubule cells. No other changes in ACE2 expression were found between ISS and SR in either NS or HS conditions and with or without losartan. In conclusion, a decreased expression of ACE2 in ISS urine proximal tubule cells could explain the previously reported increased sensitivity of ISS cells to Ang II by increasing the half-life of Ang II under low salt conditions.


Planta Medica ◽  
2002 ◽  
Vol 68 (6) ◽  
pp. 483-486 ◽  
Author(s):  
Ho Jae Han ◽  
Soo Hyun Park ◽  
Kwon Moo Park ◽  
Byung Cheol Yoon ◽  
Tae Sung Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document