Influence of Na+ intake on dopamine-induced inhibition of renal cortical Na(+)-K(+)-ATPase

1990 ◽  
Vol 258 (1) ◽  
pp. F52-F60 ◽  
Author(s):  
I. Seri ◽  
B. C. Kone ◽  
S. R. Gullans ◽  
A. Aperia ◽  
B. M. Brenner ◽  
...  

The enzyme L-amino acid decarboxylase (L-AADC), found in abundance in rat proximal tubule cell cytosol, converts L-dopa to dopamine. Dopamine, in turn, suppresses proximal tubule sodium transport by inhibiting Na(+)-K(+)-ATPase activity. We sought to determine whether changes in dietary sodium intake in rats lead to adaptation of dopamine formation and dopamine-induced Na(+)-K(+)-ATPase inhibition. In rats on a high-salt (HS) diet, the maximal velocity (Vmax) of renal cortical L-AADC was 78 +/- 19% higher than that in rats on a low-salt (LS) diet. The Michaelis constant (Km) of the enzyme remained unchanged. In renal cortical tubule cell suspensions the L-dopa-induced inhibition of ouabain-sensitive oxygen consumption (QO2) was significantly greater in rats on HS diet than in rats on LS diet. Furthermore, L-dopa completely inhibited the nystatin-induced rise in QO2 in the HS but not in the LS group. Carbidopa, an inhibitor of L-AADC, abolished the L-dopa-induced inhibition of nystatin-stimulated QO2 in cells from HS rats and was without significant effect in cells from LS rats. L-Dopa-stimulated K+ efflux was greater in cells from HS rats at 28 +/- 1 nmol.min-1.mg protein-1, compared with 7 +/- 6 nmol.min-1.ng protein-1 in cells from LS rats. By contrast, ouabain-stimulated K+ efflux did not differ between the groups.(ABSTRACT TRUNCATED AT 250 WORDS)

2012 ◽  
Vol 303 (3) ◽  
pp. F458-F466 ◽  
Author(s):  
Sara M. Molinas ◽  
Laura Trumper ◽  
Raúl A. Marinelli

Mitochondrial ammonia synthesis in proximal tubules and its urinary excretion are key components of the renal response to maintain acid-base balance during metabolic acidosis. Since aquaporin-8 (AQP8) facilitates transport of ammonia and is localized in inner mitochondrial membrane (IMM) of renal proximal cells, we hypothesized that AQP8-facilitated mitochondrial ammonia transport in these cells plays a role in the response to acidosis. We evaluated whether mitochondrial AQP8 (mtAQP8) knockdown by RNA interference is able to impair ammonia excretion in the human renal proximal tubule cell line, HK-2. By RT-PCR and immunoblotting, we found that AQP8 is expressed in these cells and is localized in IMM. HK-2 cells were transfected with short-interfering RNA targeting human AQP8. After 48 h, the levels of mtAQP8 protein decreased by 53% ( P < 0.05). mtAQP8 knockdown decreased the rate of ammonia released into culture medium in cells grown at pH 7.4 (−31%, P < 0.05) as well as in cells exposed to acid (−90%, P < 0.05). We also evaluated mtAQP8 protein expression in HK-2 cells exposed to acidic medium. After 48 h, upregulation of mtAQP8 (+74%, P < 0.05) was observed, together with higher ammonia excretion rate (+73%, P < 0.05). In vivo studies in NH4Cl-loaded rats showed that mtAQP8 protein expression was also upregulated after 7 days of acidosis in renal cortex (+51%, P < 0.05). These data suggest that mtAQP8 plays an important role in the adaptive response of proximal tubule to acidosis possibly facilitating mitochondrial ammonia transport.


1972 ◽  
Vol 54 (2) ◽  
pp. 232-245 ◽  
Author(s):  
Hans-G Heidrich ◽  
Rolf Kinne ◽  
Eva Kinne-Saffran ◽  
Kurt Hannig

Two different membrane fractions were obtained from a brush-border fraction of rat kidney cortex by using their different electrical surface charges in preparative free-flow electrophoresis. One membrane fraction contained only morphologically intact microvilli and was characterized by a high specific activity of alkaline phosphatase. The other fraction morphologically resembled classical plasma membranes by possessing junctional complexes and a high Na-K-ATPase activity The contamination of the isolated membrane fractions by other cell organelles was extremely low These two fractions represent the apical (luminal) and the basal (interstitial) area of the renal proximal tubule cell membrane and clearly demonstrate the polarity of this cell.


1998 ◽  
Vol 9 (10) ◽  
pp. 1787-1797
Author(s):  
S Nigam ◽  
C E Weston ◽  
C H Liu ◽  
E E Simon

This study examines the role of the actin cytoskeleton and integrin expression in the recovery of cell adhesion in the proximal tubule cell line JTC-12 after peroxide injury. The cells were exposed to 10, 20, or 50 mM hydrogen peroxide for 10 min and then allowed to recover. Viability measurements by trypan blue exclusion confirmed that the injury was largely nonlethal with 85% viability at 1 h even at 50 mM peroxide. ATP levels fell immediately after the peroxide incubation in all groups to approximately 10% of normal, but already showed some recovery by 1 h and full recovery in the 10 and 20 mM groups by 24 h. Cell adhesion to extracellular matrix immediately after injury was depressed at 20 and 50 mM peroxide, but by 12 h was abnormal only at 50 mM peroxide and at 24 h was essentially normal at all peroxide concentrations. Immediately after exposure to 10 mM peroxide, there were subtle abnormalities in the actin cytoskeleton (thickening of fibrils) as assessed by phalloidin staining, with more pronounced effects at 20 and 50 mM. At 1 h, many cells showed collapse of the actin cytoskeleton to the periphery. There was some recovery at 4 h; by 12 h, the actin cytoskeleton showed further recovery, although was still abnormal (coarsened microfilaments), especially at 20 and 50 mM peroxide. By 24 h, the actin cytoskeleton showed only subtle coarsening. Integrin surface expression was assessed by flow cytometry. The alpha6 subunit on cells exposed to 20 mM peroxide was unchanged at 1 h and 4 h, but by 12 h had increased to 118.5+/-4.5% and by 24 h to 146+/-13.4% of control levels. The expression of the beta1 and alphaVbeta3 integrins remained unchanged. Thus, despite coarsening of the actin cytoskeleton and depressed ATP levels, cell adhesion recovered from oxidant stress. Abnormal cell adhesion after injury was not a consequence of a decrease in integrin expression, and recovery of cell adhesion was not a consequence of the modest and selective increase in integrin expression.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Sathnur Pushpakumar ◽  
Corey J Ketchem ◽  
Michelle T Barati ◽  
Utpal Sen ◽  
Pedro J Jose ◽  
...  

Aging animals develop hypertension when challenged with high salt diet due, in part, to desensitization of dopamine receptors (DR) in renal proximal tubules (RPT). We have demonstrated that NHERF1 associates with DR1 and Na-K ATPase (NKA) and is important for regulation of NKA in RPT. Preliminary data showed loss of NHERF1 expression in 22m old F344 rats. We hypothesized that loss of NHERF1 results in increased blood pressure (BP) and lack of natriuretic response to dopamine (DA) in aging animals. To address this hypothesis, Fischer Brown Norway (FBN) rats (1m, 4m, 12m, and 24m old) were fed diet containing 1% or 8% NaCl for one week and, BP was measured in anesthetized animals using an indwelling left femoral artery catheter. 8% NaCl did not increase BP in 1m or 4 month old rats. By contrast, 8% NaCl diet increased BP in 12m (84.3±3.5 vs 90.8±2.36) and 24m (73.5±7.58 vs 104±1.6) old animals. To determine if lack of NHERF1 is responsible for the increase in BP, we measured BP in 12 m old WT and NHERF1 KO mice. By contrast to WT mice, 8% NaCl diet did not increase BP in NHERF1 KO mice (84±4.9 vs 96.5±3.56 (WT) and 78.2±3.89 vs 81.8±9.2 (NHERF1 KO mice)). To confirm that NHERF1 is required for DA-mediated inhibition of NKA, NKA activity in primary proximal tubule cells (PTC) from young and old mice in culture was measured in the presence or absence of DA. DA decreased NKA activity in PTC from young animals (67.2±3.8 vs 32.7±5.3) but not in PTC from old animals. Transfection of NHERF1 restored NKA regulation by DA in PTC from old rats (58.4±4.2 vs 64.4±4.3 (in untransfected cells) 54.2±3.8 vs 31.1±3.4 (in NHERF1 transfected cells)). We conclude that NHERF1 regulates DA-mediated proximal tubule sodium handling; however, other factors modulate BP response to dietary sodium intake in young and old animals. The contribution of NHERF1 and dopamine signaling to sodium homeostasis requires further study.


1981 ◽  
Vol 241 (5) ◽  
pp. F502-F508 ◽  
Author(s):  
M. A. Knepper ◽  
M. B. Burg

To investigate whether mineralocorticoids affect the intrinsic capacity of the proximal tubule to absorb sodium and fluid, rabbits were chronically treated a number of ways to systematically vary plasma concentrations of mineralocorticoid hormones. The rate of fluid absorption and tubule dimensions were measured in superficial S2 segments from these rabbits. Chronic administration of deoxycorticosterone acetate (DOCA) was associated with a 67% increase in fluid absorption and a 29% increase in cell volume per unit tubule length. However, neither adrenalectomy nor low sodium diet significantly affected either fluid absorption or cell volume. Furthermore, marked dietary sodium restriction prevented the response to DOCA. We conclude that the DOCA-induced increases in fluid absorption and cell volume do not result from a direct stimulation of the proximal tubular cells by the steroid but more likely are responses to systemic effects of DOCA administration that are dependent on the level of sodium intake. Thus, we find no evidence for a direct mineralocorticoid stimulation of sodium and fluid transport by the S2 portion of the proximal tubule.


2015 ◽  
Vol 30 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Lydia Aschauer ◽  
Giada Carta ◽  
Nadine Vogelsang ◽  
Eberhard Schlatter ◽  
Paul Jennings

2008 ◽  
Vol 20 (2) ◽  
pp. 311-321 ◽  
Author(s):  
Melissa Langworthy ◽  
Bin Zhou ◽  
Mark de Caestecker ◽  
Gilbert Moeckel ◽  
H. Scott Baldwin

2012 ◽  
Vol 303 (2) ◽  
pp. F266-F278 ◽  
Author(s):  
Šárka Lhoták ◽  
Sudesh Sood ◽  
Elise Brimble ◽  
Rachel E. Carlisle ◽  
Stephen M. Colgan ◽  
...  

Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca2+-independent phospholipase A2 (iPLA2β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.


Sign in / Sign up

Export Citation Format

Share Document