Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons

1990 ◽  
Vol 258 (1) ◽  
pp. F94-F102 ◽  
Author(s):  
P. K. Carmines ◽  
E. W. Inscho ◽  
R. C. Gensure

Videomicroscopic and micropuncture techniques were utilized to determine segmental microvascular responses of in vitro blood-perfused juxtamedullary nephrons to step changes in renal arterial perfusion pressure (PP). At a PP of 104 +/- 2 mmHg, inside diameters of arcuate arteries (ARC), interlobular arteries (ILA), and afferent arterioles (AFF) averaged 68.6 +/- 6.4, 35.7 +/- 1.5, and 20.4 +/- 2.3 microns, respectively. Variations in PP within the range of 70-180 mmHg elicited alterations in microvessel diameters with the following slopes: ARC, -0.15 micron/mmHg; ILA, -0.13 micron/mmHg; and AFF, -0.14 micron/mmHg. In other experiments, intravascular pressures were measured during changes in PP. Glomerular capillary pressure was well regulated (slope = 0.19 +/- 0.03 mmHg/mmHg), and mid-AFF pressure was partially regulated (slope = 0.60 +/- 0.17 mmHg/mmHg); however, pressure measured at the ILA-AFF branch point responded passively to changes in PP (slope = 0.95 +/- 0.06 mmHg/mmHg). These observations reveal that, although the entire preglomerular vasculature of juxtamedullary nephrons is capable of actively responding to changes in PP, afferent arterioles are responsible for the predominant resistance adjustment throughout the normal autoregulatory range.

1994 ◽  
Vol 266 (5) ◽  
pp. H1879-H1885 ◽  
Author(s):  
J. D. Imig ◽  
A. P. Zou ◽  
P. R. Ortiz de Montellano ◽  
Z. Sui ◽  
R. J. Roman

The present study evaluated the effects of cytochrome P-450 inhibitors on the response of the renal microvasculature to changes in renal perfusion pressure and on autoregulation of glomerular capillary pressure using the rat juxtamedullary nephron microvascular preparation perfused in vitro with a cell-free perfusate containing 5% albumin. The basal diameters of the proximal and distal afferent arterioles averaged 28 +/- 1 (n = 32) and 18 +/- 1 micron (n = 23), respectively, at a control perfusion pressure of 80 mmHg. The diameters of these vessels decreased by 8% when perfusion pressure was elevated from 80 to 160 mmHg. After addition of cytochrome P-450 inhibitors (either 17-octadecynoic acid, 20 microM; 7-ethoxyresorufin, 10 microM; or miconazole, 20 microM) to the perfusate, the diameters of the proximal and distal afferent arterioles increased by 6% in response to the same elevation in perfusion pressure. Control glomerular capillary pressure averaged 43 +/- 1 mmHg (n = 32) at a renal perfusion pressure of 80 mmHg and increased by only 9 +/- 1 mmHg when perfusion pressure was elevated to 160 mmHg. Autoregulation of glomerular capillary pressure was impaired after addition of the cytochrome P-450 inhibitors, and it increased by 18 +/- 2 mmHg when perfusion pressure was varied over the same range. These results indicate that cytochrome P-450 inhibitors attenuate the vasoconstrictor response of afferent arterioles to elevations in renal perfusion pressure and impair autoregulation of glomerular capillary pressure, suggesting a possible role for cytochrome P-450 metabolites of arachidonic acid in these responses.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Ying Ge ◽  
Fan Fan ◽  
Richard J Roman

Previous studies have indicated that Milan normotensive (MNS) rats are more susceptible to the development of hypertension and diabetic induced renal injury than Milan hypertensive (MHS) rats, but the genes and pathways involved are unknown. MNS also develop proteinuria and chronic kidney disease (CKD) as they age, whereas hypertensive MHS do not. We compared the myogenic response of isolated perfused Af-Art and autoregulation of RBF and glomerular capillary pressure in 6-9 week old MNS and MHS rats. The diameter of Af-Art of MNS rats increased from 14.0 ± 0.5 to 14.2 ± 0.6 μm (n=6) when elevation in perfusion pressure from 60 to 120 mmHg. In contrast, the diameter of the Af-Art decreased significantly from 14.3 ± 0.5 to 11.5 ± 0.6 μm (n=6) in MHS rats. In vivo, RBF increased by 26% when RPP was increased from 100 to 140 mmHg in MNS rats but it remained unchanged in MHS rats. Glomerular capillary pressure rose by 11 mmHg in MNS following the elevation in RPP from 100 to 140 mm Hg but not in MHS rats. Protein excretion increased from 8.9 ± 0.7 to 158.2 ± 23.1 mg/day in MNS rats as the increased in age from 3 to 9 months of age but it did not increase in MHS rats. In com-parison to other strains susceptible and resistant to CKD, we noticed that both MNS and Fawn Hooded hypertensive (FHH) rats that do not autoregulate RBF also share the same sequence variant in the Adducin 3 gene. We performed a genetic complementation study to test whether this mutation might be responsible for the impaired myogenic response in MNS. The diameter of the Af-Art isolated from an F1 cross of MNS &FHH rats increased from 17.2 ± 0.9 to 18.5 ± 0.9 μM (n=5) in response to increase in perfusion pressure and RBF was not efficiently autoregulated in these animals. These data indicate a mutation in Adducin 3 which impairs myogenic response of the Af-Art and increased transmission of pressure to the glomerular capillaries may contribute to the development of CKD in MNS rats similar to what is seen in FHH rats.


1989 ◽  
Vol 256 (2) ◽  
pp. F314-F320
Author(s):  
T. Yoshioka ◽  
A. Yared ◽  
V. Kon ◽  
I. Ichikawa

Autoregulation of renal blood flow and filtration rate was studied using micropuncture technique in Munich-Wistar rats with acute water deprivation (AWD) or congestive heart failure (CHF). In the first set of experiments, reduction of renal perfusion pressure to approximately to 70% of its initial value resulted in uncoupling of glomerular plasma flow rate and single-nephron glomerular filtration rate (GFR) (i.e., disproportionally profound fall in the latter) in AWD and CHF rats, whereas both indices changed little in normal control (NC) rats. The profound decrease in single-nephron GFR in AWD and CHF rats was primarily due to a reduction in glomerular capillary pressure (change from base-line value was -29 +/- 2% in AWD, -27 +/- 1% in CHF, and -8 +/- 2% in NC). This profound fall in glomerular capillary pressure in AWD and CHF rats was associated with a reduction in efferent arteriolar resistance, which contrastingly increased in NC. To investigate the mechanism underlying this unique efferent arteriolar responsiveness in AWD and CHF, the response of renal arterioles to exogenous angiotensin II was examined in separate groups of AWD, CHF, and NC. There was a markedly attenuated efferent arteriolar vasoconstrictive response in AWD and CHF (the change of efferent arteriolar resistance in both groups was some 5% of that in NC). Thus impairment in the ability to preserve GFR in these two conditions is attributed, at least in part, to altered efferent arteriolar response in the face of reduced renal perfusion pressure.(ABSTRACT TRUNCATED AT 250 WORDS)


Abstract Podocyte calcium (Ca2+) signaling plays important roles in the (patho)physiology of the glomerular filtration barrier. Overactivation of podocyte transient receptor potential canonical (TRPC) channels including TRPC6 and purinergic signaling via P2 receptors that are known mechanosensors can increase podocyte intracellular Ca2+ levels ([Ca2+]i) and cause cell injury, proteinuria and glomerular disease including in diabetes. However, important mechanistic details of the trigger and activation of these pathways in vivo in the intact glomerular environment are lacking. Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2. Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli. Single-nephron intra-glomerular capillary pressure elevations induced by obstructing the efferent arteriole lumen with laser-induced microthrombus in vivo and by a micropipette in vitro triggered >2-fold increases in podocyte [Ca2+]i. These responses were blocked in TRPC6 and P2Y2 KO mice. Acute elevations of plasma glucose caused >4-fold increases in podocyte [Ca2+]i that were abolished by pharmacological inhibition of TRPC6 or P2 receptors using SAR7334 or suramin treatment, respectively. This study established the role of Ca2+ signaling via TRPC6 channels and P2 receptors in mechanical and metabolic sensing of podocytes in vivo, which are promising therapeutic targets in conditions with high intra-glomerular capillary pressure and plasma glucose, such as diabetic and hypertensive nephropathy.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Scott C Thomson

It is generally accepted that renal blood flow (RBF) autoregulation is mediated by myogenic and tubuloglomerular feedback responses acting on the pre-glomerular resistance. If this is so, then autoregulation of RBF and glomerular capillary pressure (PGC) should change in the same direction throughout an autoregulatory step response. We computed autoregulatory step responses from time series recordings of arterial blood pressure (BP) and RBF (Transonics) blood flow or tubular stop-flow pressure (micropuncture), which is a surrogate for PGC in Wistar-Froemter rats fed for one week on low or high salt diets (n=6-10 ). Autoregulatory step responses were generated from time series by an algorithm that treats BP as a leading indicator of RBF or PGC and uses the projection theorem to solve for the impulse response which is integrated to obtain the step response. Step responses shown in the figure represent the uncompensated changes in RBF and PGC (mean + SEM) following a 1 mmHg BP step. The data clearly reveal that the time courses of RBF and PGC differ such that changes in RBF cannot predict changes in PGC. This implies that the renal hemodynamic response to a blood pressure disturbance is not confined to the pre-glomerular resistance. Furthermore, the participation of post-glomerular resistance in the autoregulatory response is sensitive to dietary salt such that PGC is more sensitive to BP on low salt diet.


1992 ◽  
Vol 263 (5) ◽  
pp. F886-F893 ◽  
Author(s):  
E. W. Inscho ◽  
K. Ohishi ◽  
L. G. Navar

Based on evidence that extracellular ATP can influence vascular smooth muscle function in other organ systems, experiments were conducted to characterize the responsiveness of rat juxtamedullary microvascular segments to ATP. Experiments were performed using the in vitro blood-perfused juxtamedullary nephron preparation combined with video microscopy. Pentobarbital-anesthetized rats were pretreated with enalaprilat (2 mg iv) for 30 min before the right kidney was isolated and prepared for study. Renal perfusion pressure was set at 110 mmHg and held constant. Under control conditions, afferent and efferent arteriolar diameters averaged 19.9 +/- 1.4 (n = 19) and 21.6 +/- 1.2 microns (n = 10), respectively. Superfusion with 1, 10, and 100 microM ATP solutions induced sustained dose-dependent afferent vasoconstriction of 8.3 +/- 1.4, 12.8 +/- 1.7, and 12.1 +/- 2.1%, respectively (P < 0.01). Afferent vasoconstrictor responses to ATP were also observed during adenosine receptor blockade. In contrast, efferent arterioles were unresponsive to ATP stimulation even at concentrations as high as 100 microM (P > 0.05). Arcuate and interlobular arterial diameters averaged 82.0 +/- 15.7 (n = 5) and 43.4 +/- 4.5 microns (n = 6), respectively, during control conditions and responded to ATP treatment with a transient vasoconstriction followed by a gradual return to control diameter. Interlobular arteries exhibited a sustained constriction only at the 100 microM concentration (P < 0.05). These data demonstrate that afferent arterioles are more responsive to ATP treatment than other renal microvascular segments and suggest the presence of ATP-sensitive P2x purinoceptors on pre- but not postglomerular juxtamedullary microvascular elements.


Sign in / Sign up

Export Citation Format

Share Document