Mechanism of aluminum-induced calcium efflux from cultured neonatal mouse calvariae

1990 ◽  
Vol 258 (3) ◽  
pp. F583-F588 ◽  
Author(s):  
S. M. Sprague ◽  
D. A. Bushinsky

Aluminum has been shown to increase unidirectional 45Ca efflux from prelabeled bones in vitro; whether aluminum affects net calcium efflux and, if so, by what mechanism has not been studied. To examine the effects of aluminum on net calcium flux from bone we cultured live and dead neonatal mouse calvariae with and without graded concentrations of aluminum (10(-8) to 10(-5) M). Aluminum induced a dose-dependent net calcium efflux from live bone after 24 h, but not 3 h, which was similar in magnitude to that produced by 10(-8) M parathyroid hormone. The normal calcium influx into dead bone was not altered by aluminum. Release of beta-glucuronidase, a lysosomal enzyme released by osteoclasts, increased after a 24-h incubation in aluminum-containing medium and was correlated with net calcium efflux. Calcitonin, an inhibitor of osteoclastic bone mineral dissolution, abolished the increase in beta-glucuronidase release and nullified the aluminum-induced net calcium efflux. Thus aluminum induces cell-mediated net calcium efflux from bone and increases beta-glucuronidase release. Calcitonin inhibits the increase in both calcium efflux and beta-glucuronidase release, suggesting that aluminum stimulates osteoclasts to release bone mineral.

1992 ◽  
Vol 262 (3) ◽  
pp. F425-F431 ◽  
Author(s):  
D. A. Bushinsky ◽  
N. E. Sessler ◽  
N. S. Krieger

There is a smaller net calcium efflux from bone in vitro during respiratory (increased PCO2) than metabolic (decreased [HCO3-] acidosis. This could be due to the elevated PCO2, which would lessen the driving force for mineral dissolution and increase the driving force for mineralization with respect to carbonated apatite in the bone mineral. To test this hypothesis, we injected neonatal mice with 45Ca and dissected the radiolabeled calvariae 24 h later. The live calvariae were then cultured for 24 h under conditions simulating respiratory acidosis (Resp, pH = 7.225 +/- 0.003, PCO2 = 87.5 +/- 0.1 mmHg), severe respiratory acidosis (SResp, pH = 7.072 +/- 0.004, PCO2 = 103.0 +/- 0.5 mmHg), metabolic acidosis (Met, pH = 7.212 +/- 0.003, HCO3- = 15.5 +/- 0.1 meq/l), or normal acid-base status (Ctl, pH = 7.452 +/- 0.003, PCO2 = 40.0 +/- 0.2 mmHg, HCO3- = 27.8 +/- 0.2 meq/l) and bidirectional net calcium flux (JCa) and unidirectional 45Ca release were determined. There was greater JCa from bone during Met than Resp, and JCa was not different from Met during SResp despite the latter having a significantly lower pH. There was greater unidirectional 45Ca release from bone during Met than Resp, SResp, or Ctl. There was a similar direct correlation between JCa and 45Ca efflux in the respiratory and metabolic groups. However, when calvarial osteoclast activity was inhibited with calcitonin,although there was again greater JCa and 45Ca release with a metabolic compared with respiratory acidosis, there was a greater proportion of 45Ca release than JCa from bone.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (5) ◽  
pp. F836-F842 ◽  
Author(s):  
D. A. Bushinsky

In vivo chronic metabolic acidosis induces bone mineral dissolution. Whether the dissolution is due to alterations in physicochemical factors alone, as in acute metabolic acidosis, or requires participation of bone cells is not clear. The effect of chronic respiratory acidosis on bone has also not been established. To determine the effects of chronic metabolic and respiratory acidosis on net calcium flux from bone, we cultured live and dead neonatal mouse calvariae for 99 h in control medium or in medium acidified (pH approximately equal to 7.1) either by lowering the bicarbonate concentration (Met) or by increasing the PCO2 (Resp). We measured net calcium flux (JCa) over 0-48, 48-96, and 96-99 h. Over the first 48 h, there was greater net calcium efflux from live and dead Met than from both Resp groups. All four acidic groups had greater net calcium efflux than controls. Over the last 51 h of the chronic 99 h culture, there was net calcium efflux only from live Met (JCa = 285 +/- 129 nmol.bone-1.3 h-1) and not from any of the other groups (live control, JCa = -183 +/- 24; live Resp, JCa = -110 +/- 22; dead control, JCa = -256 +/- 12; dead Met, JCa = 11 +/- 78; dead Resp, JCa = -27 +/- 47; each P less than 0.02 vs. live Met). There is net calcium efflux from live cultured neonatal mouse calvariae during chronic metabolic, but not respiratory, acidosis. During chronic acidosis, decreased medium bicarbonate, and not just a fall in pH, is necessary to enhance net calcium efflux from live bone.


1983 ◽  
Vol 245 (2) ◽  
pp. F204-F209 ◽  
Author(s):  
D. A. Bushinsky ◽  
N. S. Krieger ◽  
D. I. Geisser ◽  
E. B. Grossman ◽  
F. L. Coe

Bone mineral is thought to decompose during acute and chronic metabolic acidosis and thereby contribute to buffering of the acid load. We cultured neonatal mouse calvariae for 3 h and found calcium efflux from bone when the medium pH was below 7.40, calcium influx into bone when the pH was above 7.40, and no net flux at pH 7.40. The calcium flux varied to the same extent when medium pH was altered by a primary change in the medium bicarbonate concentration or in the partial pressure of carbon dioxide. Calcium and proton fluxes were inversely correlated (r = -0.713, P less than 0.001), and the slope of the linear regression indicated that between 16 and 21 neq of proton entered the calvariae in exchange for each neq of calcium that left. In 24-h cultures, acid medium also caused net calcium efflux from bone, and alkaline medium caused net influx. PTH increased calcium efflux at acid but not at alkaline medium pH. Sodium azide resulted in net influx of calcium into bone at all values of medium pH. Calcium release by cultured calvariae in response to low medium pH is associated with proton buffering; over 3 h the stoichiometry indicates that little buffering is due to the dissolution of calcium-containing crystals. Effects of medium pH on calcium release are amplified by PTH, and calcium efflux can be prevented by the metabolic inhibitor sodium azide.


1988 ◽  
Vol 254 (3) ◽  
pp. F306-F310 ◽  
Author(s):  
D. A. Bushinsky

During acute metabolic acidosis there is a net influx of protons into bone, decreasing the elevated proton concentration. Whether there is an influx of protons into bone during acute respiratory acidosis is not known. To determine the effect of respiratory acidosis on net proton flux (JH) relative to bone, we compared JH from neonatal mouse calvariae incubated for 3 h in medium acidified by an increase in PCO2 (respiratory acidosis) with that from calvariae incubated in medium acidified to the same extent by a decrease in bicarbonate concentration (metabolic acidosis). The initial medium pH with respiratory acidosis was not different from that with metabolic acidosis (7.108 +/- 0.005 vs. 7.091 +/- 0.007, respectively, P = NS). During respiratory acidosis there was no JH from bone relative to the medium (JH = 236 +/- 93 neq.bone-1.3h-1, P = NS vs. 0); however, during metabolic acidosis there was net proton influx from the medium into bone (JH = -703 +/- 108, P less than 0.05 vs. 0, P less than 0.001 vs. respiratory acidosis). There was less calcium efflux from bone during respiratory than during metabolic acidosis (JCa = 68 +/- 6 nmol.bone-1.3 h-1 vs. 100 +/- 9, respectively, P less than 0.001). There is a net influx of protons into bone in vitro during acute metabolic, but not during acute respiratory, acidosis. The smaller calcium efflux during respiratory acidosis may indicate less net bone mineral dissolution and thus less buffer release into the medium.


1992 ◽  
Vol 263 (3) ◽  
pp. F540-F545 ◽  
Author(s):  
S. M. Moe ◽  
S. M. Sprague

beta 2-Microglobulin (beta 2M) polymerizes to form amyloid fibrils that deposit and cause destructive bone lesions in patients on chronic dialytic therapy. beta 2 M is mitogenic to osteoblasts; however, its effect on bone mineralization is unknown. To determine whether beta 2M causes bone demineralization, neonatal mouse calvariae were incubated with and without beta 2M, and net calcium flux was calculated. Following a 48-h but not 3- or 24-h incubation, beta 2M (10(-8)-10(-6) M) induced a net calcium efflux. The efflux was similar to that observed with 10(-10) M parathyroid hormone (PTH) but less than that observed with 10(-8 M PTH. Devitalizing the calvariae resulted in a net calcium influx that was unaffected by the addition of beta 2M, indicating a cell-mediated phenomenon. The release of beta-glucuronidase, an osteoclast enzyme, increased after a 48-h but not a 24-h incubation with beta 2M. Calcitonin, an osteoclast inhibitor, blocked the beta 2M-induced calcium efflux and beta-glucuronidase release, suggesting osteoclast involvement. Thus beta 2M induces a dose- and time-dependent, cell-mediated calcium efflux from neonatal mouse calvariae that involves osteoclast stimulation.


1981 ◽  
Vol 240 (5) ◽  
pp. E550-E555
Author(s):  
S. Handwerger ◽  
P. M. Conn ◽  
J. Barrett ◽  
S. Barry ◽  
A. Golander

To study the effects of calcium on the release of human placental lactogen (hPL), placental explants were exposed to media containing lower or higher concentrations of calcium than normally available to the placenta. Explants exposed for 2 h to calcium-poor medium or medium containing either 2 mM EDTA or 2 mM EGTA released 160, 248, and 253% more hPL, respectively, than control explants. In contrast, explants exposed to medium containing higher than normal calcium concentrations released the same amounts of hPL as the control explants. At lower than normal extracellular calcium concentrations, the increased hPL release was inversely proportional to the calcium concentration. The increased release in calcium-poor medium was inhibited by subsequent exposure of the explants to medium containing calcium and was prevented by either barium or magnesium. Changes in barium or magnesium concentrations, however, had no effects on hPL release in the presence of normal extracellular calcium concentrations. Methoxyverapamil (D 600), an inhibitor of calcium flux, stimulated hPL release. Because low extracellular calcium and methoxyverapamil both inhibit calcium influx, these experiments suggest that calcium influx inhibits hPL release. The role of calcium in the regulation of hPL release therefore appears to be different from that reported in other release systems.


1996 ◽  
Vol 271 (1) ◽  
pp. F216-F222 ◽  
Author(s):  
D. A. Bushinsky

In vivo and in vitro evidence indicates that metabolic acidosis, which may occur prior to complete excretion of end products of metabolism, increases urinary calcium excretion. The additional urinary calcium is almost certainly derived from bone mineral. Neutralization of this daily acid load, through the provision of base, decreases calcium excretion, suggesting that alkali may influence bone calcium accretion. To determine whether metabolic alkalosis alters net calcium efflux (JCa+) from bone and bone cell function, we cultured neonatal mouse calvariae for 48 h in either control medium (pH approximately equal to 7.4, [HCO3-] approximately equal to 24), medium simulating mild alkalosis (pH approximately equal to 7.5, [HCO3-] approximately equal to 31), or severe alkalosis (pH approximately equal to 7.6, [HCO3-] approximately equal to 39) and measured JCa+ and the release of osteoclastic beta-glucuronidase and osteoblastic collagen synthesis. Compared with control, metabolic alkalosis caused a progressive decrease in JCa+, which was correlated inversely with initial medium pH (pHi). Alkalosis caused a decrease in osteoclastic beta-glucuronidase release, which was correlated inversely with pHi and directly with JCa+. Alkalosis also caused an increase in osteoblastic collagen synthesis, which was correlated directly with pHi and inversely with JCa+. There was a strong inverse correlation between the effects alkalosis on osteoclastic beta-glucuronidase release and osteoblastic collagen synthesis. Thus metabolic alkalosis decreases JCa+ from bone, at least in part, by decreasing osteoclastic resorption and increasing osteoblastic formation. These results suggest that the provision of base to neutralize endogenous acid production may improve bone mineral accretion.


1983 ◽  
Vol 61 (4) ◽  
pp. 388-394 ◽  
Author(s):  
Nateetip Krishnamra ◽  
Liangchai Limlomwongse

The hypocalcaemic action of ethanol (3 g/kg body weight) was investigated in intact, thyroparathyroidectomized and antrectomized rats. It was found that ethanol administered either intraperitoneally or orally reduced plasma calcium concentrations within 30 min and that this response lasted for 8 h. Additional studies performed in antrectomized and thyroparathyroidectomized rats indicated that neither gastrin nor the hormones parathormone and calcitonin had any effect on the hypocalcaemic effect of ethanol. Investigation of the mechanism of action of ethanol-induced hypocalcaemia involved measurements of calcium efflux from and influx into the plasma pool. Ethanol did not have any effect on the disappearance from plasma of 45Ca administered intravenously at 0 min. In contrast, ethanol was found to enhance the disappearance of 45Ca administered intraperitoneally 17 h prior to the experiment. The interpretation of 45Ca studies was discussed and it was concluded that ethanol-induced hypocalcaemia resulted from a decrease in calcium influx into the plasma. Additional in vitro studies did not indicate the suppressive action of ethanol on the release of calcium from tibias. In conclusion, our results show that the mechanism of hypocalcaemia caused by ethanol is the suppression of calcium release from some tissue(s) into the plasma.


1987 ◽  
Vol 253 (5) ◽  
pp. F998-F1005 ◽  
Author(s):  
D. A. Bushinsky ◽  
R. J. Lechleider

Protons are buffered and calcium is released by bone during metabolic acidosis. Incubation of neonatal mouse calvariae in acid medium causes net calcium efflux from bone and net proton influx into bone, just as metabolic acidosis does in vivo. To determine whether the calcium carbonate phase of bone mineral is solubilized with increasing proton concentrations, we cultured calvariae for 3 h in medium in which the saturation was varied by changing pH or calcium and phosphate concentrations. We determined the driving force for crystallization by calculating the Gibbs free energy of formation (DG). With alteration of the medium pH, calcium carbonate entry or loss from bone varied linearly with the initial DG for medium calcium carbonate (r = -0.745, n = 41, P less than 0.001) as it did with alteration of the medium calcium and phosphate (r = -0.665, n = 118, P less than 0.001). There was dissolution of calcium carbonate into medium that was unsaturated with respect to calcium carbonate, net flux ceased at saturation, and calcium carbonate entered bone from supersaturated medium, indicating that the medium is in equilibrium with the calcium carbonate phase of bone mineral. Neither the mineral phase brushite nor apatite was in equilibrium with the medium. These observations indicate that in vitro, acute proton-induced calcium efflux is due to dissolution of bone calcium carbonate.


1993 ◽  
Vol 264 (5) ◽  
pp. F882-F890 ◽  
Author(s):  
S. M. Sprague ◽  
N. S. Krieger ◽  
D. A. Bushinsky

Cells isolated from neonatal mouse calvariae can be induced to form mineralized nodules after exposure to ascorbic acid and beta-glycerophosphate. To determine whether aluminum inhibits nodule formation and subsequent mineralization, cells isolated from neonatal mouse calvariae were induced to form nodules and incubated with increasing concentrations of aluminum (10(-7) to 10(-5) M). Compared with control and 10(-7) M aluminum-supplemented cultures, the number of nodules formed and the number of nodules calcified were reduced in cells incubated with 10(-6) and 10(-5) M aluminum. The cumulative net calcium uptake into the nodules and their final calcium content were also decreased with 10(-6) and 10(-5) M aluminum. After 10 and 18 days of incubation, aluminum did not affect DNA synthesis or release of alkaline phosphatase but significantly inhibited collagen production. Thus aluminum induced a dose-dependent inhibition of nodule formation and calcification that may be related to its inhibition of collagen production.


Sign in / Sign up

Export Citation Format

Share Document