45ca efflux
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 0)

H-INDEX

27
(FIVE YEARS 0)

1996 ◽  
Vol 271 (5) ◽  
pp. C1472-C1479 ◽  
Author(s):  
K. M. Wells ◽  
R. F. Abercrombie

Effects of increasing intraluminal Ca ([Ca]i) on the kinetics of rat brain microsomal uptake and efflux are reported here. Isolated rat brain microsomes accumulated 45Ca in an extravesicular free Ca ([Ca]o)- and ATP-dependent manner. Increased microsomal Ca load resulted in a decreased initial rate of 45Ca uptake and an increased tau, time to reach 63% of steady-state accumulation. Isolated rate brain microsomes lost 45Ca in a temperature- and [Ca]i-dependent manner. Whether preloaded with tracer 45Ca and either < or = 0.5 or 25 microM [Ca]o, the time constant of efflux was larger at 4 degrees C as compared with 37 degrees C. Additionally, increased microsomal Ca load resulted in a decreased time constant of 45Ca efflux. This shorter efflux time constant cannot explain the effect of [Ca]i on tau during uptake which was in fact longer for preloaded microsomes. Rather, these data suggest that, as Ca accumulates into unloaded microsomes, a steadily increasing [Ca]i slows unidirectional Ca influx (presumably by inhibiting the endoplasmic reticulum Ca pump) and enhances unidirectional Ca efflux, and that these combined effects ultimately shorten the time needed to achieve steady-state luminal [Ca]i.


1993 ◽  
Vol 264 (3) ◽  
pp. E428-E433 ◽  
Author(s):  
W. J. Malaisse ◽  
J. Rasschaert ◽  
M. L. Villanueva-Penacarrillo ◽  
I. Valverde

The methyl esters of succinic acid were introduced a few years ago as new potent insulin secretagogues. In the present study, they were found to increase O2 uptake by rat islets incubated in the absence or presence of D-glucose; to decrease 86Rb outflow from prelabeled islets; to stimulate biosynthetic activity in the islets, with a preferential effect on the synthesis of proinsulin; to inhibit 45Ca efflux from prelabeled islets perifused in the absence of extracellular Ca2+ but to augment 45Ca net uptake and to cause a biphasic stimulation of 45Ca outflow in islets incubated or perifused in the presence of extracellular Ca2+; and to evoke a biphasic stimulation of insulin release. The insulinotropic action of these methyl esters coincided with a shift to the left of the sigmoidal relationship between insulin output and D-glucose concentration, was concentration related in the 2-10 mM range, failed to be duplicated by succinic acid, displayed both Ca2+ dependency and resistance to a lowering of extracellular pH, and was operative in the absence of D-glucose whether or not the islets were stimulated by non-nutrient secretagogues. It is concluded that the respiratory, cationic, biosynthetic, and secretory responses of the islets to succinate methyl esters display the characteristic features usually encountered in the process of nutrient-stimulated insulin release.


1992 ◽  
Vol 262 (3) ◽  
pp. F425-F431 ◽  
Author(s):  
D. A. Bushinsky ◽  
N. E. Sessler ◽  
N. S. Krieger

There is a smaller net calcium efflux from bone in vitro during respiratory (increased PCO2) than metabolic (decreased [HCO3-] acidosis. This could be due to the elevated PCO2, which would lessen the driving force for mineral dissolution and increase the driving force for mineralization with respect to carbonated apatite in the bone mineral. To test this hypothesis, we injected neonatal mice with 45Ca and dissected the radiolabeled calvariae 24 h later. The live calvariae were then cultured for 24 h under conditions simulating respiratory acidosis (Resp, pH = 7.225 +/- 0.003, PCO2 = 87.5 +/- 0.1 mmHg), severe respiratory acidosis (SResp, pH = 7.072 +/- 0.004, PCO2 = 103.0 +/- 0.5 mmHg), metabolic acidosis (Met, pH = 7.212 +/- 0.003, HCO3- = 15.5 +/- 0.1 meq/l), or normal acid-base status (Ctl, pH = 7.452 +/- 0.003, PCO2 = 40.0 +/- 0.2 mmHg, HCO3- = 27.8 +/- 0.2 meq/l) and bidirectional net calcium flux (JCa) and unidirectional 45Ca release were determined. There was greater JCa from bone during Met than Resp, and JCa was not different from Met during SResp despite the latter having a significantly lower pH. There was greater unidirectional 45Ca release from bone during Met than Resp, SResp, or Ctl. There was a similar direct correlation between JCa and 45Ca efflux in the respiratory and metabolic groups. However, when calvarial osteoclast activity was inhibited with calcitonin,although there was again greater JCa and 45Ca release with a metabolic compared with respiratory acidosis, there was a greater proportion of 45Ca release than JCa from bone.(ABSTRACT TRUNCATED AT 250 WORDS)


Platelets ◽  
1992 ◽  
Vol 3 (3) ◽  
pp. 137-144 ◽  
Author(s):  
M. E. Bromberg ◽  
R. W. Sevy ◽  
L. Salganicoff

1991 ◽  
Vol 261 (2) ◽  
pp. H554-H560 ◽  
Author(s):  
M. A. Khoyi ◽  
S. M. Bowen ◽  
K. D. Keef

These studies were undertaken to determine whether agonist-induced 45Ca influx in the coronary artery is modified under conditions in which Na+ pump activity (and consequently membrane potential) is altered. 45Ca influx and contraction were measured in the rabbit coronary artery with the H1-receptor agonist 2-(2-aminoethyl)pyridine (AEP, 10(-4) M) after prolonged Na+ pump block (leading to profound depolarization) and after enhanced Na+ pump activity (leading to hyperpolarization). AEP contracted vessels, enhanced 45Ca influx into the smooth muscle, and increased 45Ca efflux. The AEP-induced contraction was reduced but not abolished with either nifedipine (10(-6) M) or Ca(2+)-free solution. In tissues subjected to prolonged Na+ pump block AEP caused contraction but 45Ca influx was not increased over the unstimulated tissue. Ca(2+)-free solution and nifedipine reduced but did not abolish these contractions. In tissues with enhanced Na+ pump activity AEP caused contraction but 45Ca influx was not increased. Ca(2+)-free solution reduced these contractions but nifedipine did not. We conclude that the measurable 45Ca influx changes in a manner that is compatible with the characteristics of voltage-gated Ca2+ channels that have a low open probability during hyperpolarization and are inactivated by a period of long slow depolarization.


1991 ◽  
Vol 276 (1) ◽  
pp. 169-174 ◽  
Author(s):  
Z Y Gao ◽  
G Drews ◽  
J C Henquin

Oxytocin (OT) produced a dose-dependent increase in somatostatin, glucagon and insulin release by isolated mouse islets. A small effect on somatostatin release was observed with 0.1 nM-OT, but 1-10 nM-OT was required to affect A- and B- cells significantly. The effects of OT on somatostatin and glucagon release were similar in the presence of 3 mM- and 10 mM-glucose. No change in insulin release was produced by OT in 3 mM-glucose, but a stimulation was still observed in the presence of a maximally effective concentration of glucose (30 mM). The increase in insulin release produced by OT (in 15 mM-glucose) was accompanied by small accelerations of 86Rb and 45Ca efflux from islet cells. Omission of extracellular Ca2+ accentuated the effect of OT on 86Rb efflux, attenuated that on 45Ca efflux, and abolished that on release. OT never inhibited 86Rb efflux. It did not affect the resting potential of B-cells, but slightly increased the Ca2(+)-dependent electrical activity induced by 15 mM-glucose. OT did not affect cyclic AMP levels, but increased inositol phosphate levels in islet cells. It is suggested that the amplification of glucose-induced insulin release that OT produces is due to a stimulation of phosphoinositide metabolism, and presumably an activation of protein kinase C, rather than to a change in cyclic AMP levels or a direct action on the membrane potential. Since OT is present in the pancreas, it is possible that it exerts a neuropeptidergic control of the islet function.


1990 ◽  
Vol 258 (3) ◽  
pp. E529-E533 ◽  
Author(s):  
P. O. Plasman ◽  
M. Hermann ◽  
A. Herchuelz ◽  
P. Lebrun

The presence of different types [long lasting (L) and transient (T)] of active voltage-operated Ca2+ channels in islet cells was investigated by comparing the effects of Cd2+, Ni2+, and 1,4-dihydropyridines on 45Ca uptake, 45Ca efflux, and insulin release in intact rat pancreatic islets. In several other excitable cells the L-channel has been shown to be modulated by 1,4-dihydropyridines and Cd2+, whereas the T-channel was reported to be sensitive to Ni2+. Nifedipine and Cd2+ inhibited whereas BAY K 8644 enhanced the glucose (11.1, 22.2 mM)-stimulated short-term 45Ca uptake, 45Ca efflux, and insulin release. In contrast, the stimulatory effects of glucose (11.1, 22.2 mM) on 45Ca uptake, 45Ca efflux, and insulin release were unaffected by Ni2+. These findings confirm that glucose provokes Ca2+ entry mainly by activating voltage-sensitive Ca2+ channels of the L-type and suggest that the B-cell plasma membrane is not equipped with active T-type Ca2+ channels.


1990 ◽  
Vol 258 (3) ◽  
pp. F583-F588 ◽  
Author(s):  
S. M. Sprague ◽  
D. A. Bushinsky

Aluminum has been shown to increase unidirectional 45Ca efflux from prelabeled bones in vitro; whether aluminum affects net calcium efflux and, if so, by what mechanism has not been studied. To examine the effects of aluminum on net calcium flux from bone we cultured live and dead neonatal mouse calvariae with and without graded concentrations of aluminum (10(-8) to 10(-5) M). Aluminum induced a dose-dependent net calcium efflux from live bone after 24 h, but not 3 h, which was similar in magnitude to that produced by 10(-8) M parathyroid hormone. The normal calcium influx into dead bone was not altered by aluminum. Release of beta-glucuronidase, a lysosomal enzyme released by osteoclasts, increased after a 24-h incubation in aluminum-containing medium and was correlated with net calcium efflux. Calcitonin, an inhibitor of osteoclastic bone mineral dissolution, abolished the increase in beta-glucuronidase release and nullified the aluminum-induced net calcium efflux. Thus aluminum induces cell-mediated net calcium efflux from bone and increases beta-glucuronidase release. Calcitonin inhibits the increase in both calcium efflux and beta-glucuronidase release, suggesting that aluminum stimulates osteoclasts to release bone mineral.


Sign in / Sign up

Export Citation Format

Share Document