Distribution of Cl-/HCO3- exchange and intercalated cells in rabbit cortical collecting duct

1994 ◽  
Vol 267 (6) ◽  
pp. F952-F964 ◽  
Author(s):  
I. D. Weiner ◽  
A. E. Weill ◽  
A. R. New

At least two cortical collecting duct (CCD) intercalated cell populations mediate HCO3- secretion and reabsorption. The present study examined the membrane location of intercalated cell Cl-/base exchange activity and the axial distribution of CCD intercalated cells. CCD were studied using in vitro microperfusion in CO2/HCO3(-)-containing solutions; intracellular pH was measured using 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. The A-type intercalated cell (A cell) and B-type intercalated cell (B cell) were identified functionally by the absence and presence of apical Cl-/HCO3- exchange activity, respectively. When a 0 mM Cl-, 0 mM HCO3- luminal solution was used, removal of Cl- from the peritubular solution caused intracellular alkalinization in all B cells. The alkalinization required neither extracellular Na+ nor changes in membrane potential. Peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (10(-4) M) inhibited A cell but not B cell basolateral Cl-/base exchange activity. In comparison to studies performed with a 0 mM Cl- 0 mM HCO3- luminal solution, the use of a 0 mM Cl-, 25 mM HCO3- luminal solution inhibited both the identification and the magnitude of B cell basolateral Cl-/base exchange activity. When CCD from the inner and outer cortex were separately studied, only 7% of outer CCD intercalated cells were A cells, whereas 93% were B cells. In contrast, in the inner CCD, 58% of intercalated cells were A cells and 42% were B cells. Under stop-flow conditions, outer CCD alkalinized the luminal fluid, whereas inner CCD acidified the luminal fluid. These results indicate that all CCD intercalated cells possess basolateral Cl-/base exchange activity; however, A cell and B cell basolateral Cl-/base exchange activity differs, at least in terms of sensitivity to DIDS. Furthermore, there is axial heterogeneity in both intercalated cell type and function.

1999 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
JIN KIM ◽  
YOUNG-HEE KIM ◽  
JUNG-HO CHA ◽  
C. CRAIG TISHER ◽  
KIRSTEN M. MADSEN

Abstract. At least two populations of intercalated cells, type A and type B, exist in the connecting tubule (CNT), initial collecting tubule (ICT), and cortical collecting duct (CCD). Type A intercalated cells secrete protons via an apical H+ - ATPase and reabsorb bicarbonate by a band 3-like Cl-/HCO3- exchanger, AE1, located in the basolateral plasma membrane. Type B intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger that is distinct from AE1 and remains to be identified. They express H+ -ATPase in the basolateral plasma membrane and in vesicles throughout the cytoplasm. A third type of intercalated cell with apical H+ -ATPase, but no AE1, has been described in the CNT and CCD of both rat and mouse. The prevalence of the third cell type is not known. The aim of this study was to characterize and quantify intercalated cell subtypes, including the newly described third non A-non B cell, in the CNT, ICT, and CCD of the rat and mouse. A triple immunolabeling procedure was developed in which antibodies to H+ -ATPase and band 3 protein were used to identify subpopulations of intercalated cells, and segment-specific antibodies were used to identify distal tubule and collecting duct segments. In both rat and mouse, intercalated cells constituted approximately 40% of the cells in the CNT, ICT, and CCD. Type A, type B, and non A-non B intercalated cells were observed in all of the three segments, with type A cells being the most prevalent in both species. In the mouse, however, non A-non B cells constituted more than half of the intercalated cells in the CNT, 39% in the ICT, and 22% in the CCD, compared with 14, 7, and 5%, respectively, in the rat. In contrast, type B intercalated cells accounted for only 8 to 16% of the intercalated cells in the three segments in the mouse compared with 26 to 39% in the rat. It is concluded that striking differences exist in the prevalence and distribution of the different types of intercalated cells in the CNT, ICT, and CCD of rat and mouse. In the rat, the non A-non B cells are fairly rare, whereas in the mouse, they constitute a major fraction of the intercalated cells, primarily at the expense of the type B intercalated cells.


1998 ◽  
Vol 274 (6) ◽  
pp. F1086-F1094 ◽  
Author(s):  
Amy E. Milton ◽  
I. David Weiner

The cortical collecting duct (CCD) B cell possesses an apical anion exchanger dissimilar to AE1, AE2, and AE3. The purpose of these studies was to characterize this transporter more fully by examining its regulation by CO2 and[Formula: see text]. We measured intracellular pH (pHi) in single intercalated cells of in vitro microperfused CCD using the fluorescent, pH-sensitive dye, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). In the absence of extracellular CO2/[Formula: see text], luminal Cl− removal caused reversible intracellular alkalinization, identifying this transporter as a Cl−/base exchanger able to transport bases other than [Formula: see text]. Adding extracellular CO2/[Formula: see text]decreased B cell pHi while simultaneously increasing Cl−/base exchange activity. Since intracellular acidification inhibits AE1, AE2, and AE3, we examined mechanisms other than pHiby which the stimulation occurred. These studies showed that B cell apical anion exchange activity was CO2 stimulated and carbonic anhydrase dependent. Moreover, the stimulation was independent of luminal bicarbonate, luminal pH or pHi, and changes in buffer capacity. We conclude that the B cell possesses an apical Cl−/base exchanger whose activity is regulated by CO2-stimulated, carbonic anhydrase-dependent cytoplasmic [Formula: see text]formation.


2013 ◽  
Vol 304 (4) ◽  
pp. F422-F431 ◽  
Author(s):  
Jesse M. Bishop ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
Jill W. Verlander ◽  
...  

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.


2000 ◽  
Vol 203 (1) ◽  
pp. 137-145 ◽  
Author(s):  
D. Brown ◽  
S. Breton

Many vertebrate transporting epithelia contain characteristic ‘mitochondria-rich’ cells that express high levels of a vacuolar proton-pumping ATPase (H(+)V-ATPase) on their plasma membrane and on intracellular vesicles. In the kidney cortex, A-cells and B-cells are involved in proton secretion and bicarbonate secretion, respectively, in the distal nephron and collecting duct. A-cells have an H(+)V-ATPase on their apical plasma membrane and on intracellular vesicles, whereas the cellular location of the H(+)V-ATPase can be apical, basolateral, bipolar or diffuse in B-cells. The rat epididymis and vas deferens also contain a distinct population of H(+)V-ATPase-rich epithelial cells. These cells are involved in generating a low luminal pH, which is involved in sperm maturation and in maintaining sperm in an immotile state during their passage through the epididymis and vas deferens. In both kidney and reproductive tract, H(+)V-ATPase-rich cells have a high rate of apical membrane recycling. H(+)V-ATPase molecules are transported between the cell surface and the cytoplasm in vesicles that have a well-defined ‘coat’ structure formed of the peripheral V(1) subunits of the H(+)V-ATPase. In addition, we propose that B-type intercalated cells have a transcytotic pathway that enables them to shuttle H(+)V-ATPase molecules from apical to basolateral plasma membrane domains. This hypothesis is supported by data showing that A-cells and B-cells have different intracellular trafficking pathways for LGP120, a lysosomal glycoprotein. LGP120 was found both on the basolateral plasma membrane and in lysosomes in B-cells, whereas no LGP120 was detectable in the plasma membrane of A-cells. We propose that the ‘polarity reversal’ of the H(+)V-ATPase in B-intercalated cells is mediated by a physiologically regulated transcytotic pathway that may be similar to that existing in some other cell types.


2000 ◽  
Vol 279 (6) ◽  
pp. F1053-F1059 ◽  
Author(s):  
Nicolas Laroche-Joubert ◽  
Sophie Marsy ◽  
Alain Doucet

Rat collecting ducts exhibit type I or type III K+-ATPase activities when animals are fed a normal (NK) or a K+-depleted diet (LK). This study aimed at determining functionally the cell origin of these two K+-ATPases. For this purpose, we searched for an effect on K+-ATPases of hormones that trigger cAMP production in a cell-specific fashion. The effects of 1-deamino-8-d-arginine vasopressin (dD-AVP), calcitonin, and isoproterenol in principal cells, α-intercalated cells, and β-intercalated cells of cortical collecting duct (CCD), respectively, and of dD-AVP and glucagon in principal and α-intercalated cells of outer medullary collecting duct (OMCD), respectively, were examined. In CCDs, K+-ATPase was stimulated by calcitonin and isoproterenol in NK rats (type I K+-ATPase) and by dD-AVP in LK rats (type III K+-ATPase). In OMCDs, dD-AVP and glucagon stimulated type III but not type I K+-ATPase. These hormone effects were mimicked by the cAMP-permeant analog dibutyryl-cAMP. In conclusion, in NK rats, cAMP stimulates type I K+-ATPase activity in α- and β-intercalated CCD cells, whereas in LK rats it stimulates type III K+-ATPase in principal cells of both CCD and OMCD and in OMCD intercalated cells.


2015 ◽  
Vol 309 (3) ◽  
pp. F259-F268 ◽  
Author(s):  
Masayoshi Nanami ◽  
Vladimir Pech ◽  
Yoskaly Lazo-Fernandez ◽  
Alan M. Weinstein ◽  
Susan M. Wall

Epithelial Na+ channel (ENaC) blockade stimulates stilbene-sensitive conductive Cl− secretion in the mouse cortical collecting duct (CCD). This study's purpose was to determine the co-ion that accompanies benzamil- and DIDS-sensitive Cl− flux. Thus transepithelial voltage, VT, as well as total CO2 (tCO2) and Cl− flux were measured in CCDs from aldosterone-treated mice consuming a NaCl-replete diet. We reasoned that if stilbene inhibitors (DIDS) reduce conductive anion secretion they should reduce the lumen-negative VT. However, during ENaC blockade (benzamil, 3 μM), DIDS (100 μM) application to the perfusate reduced net H+ secretion, which increased the lumen-negative VT. Conversely, ENaC blockade alone stimulated H+ secretion, which reduced the lumen-negative VT. Application of an ENaC inhibitor to the perfusate reduced the lumen-negative VT, increased intercalated cell intracellular pH, and reduced net tCO2 secretion. However, benzamil did not change tCO2 flux during apical H+-ATPase blockade (bafilomycin, 5 nM). The increment in H+ secretion observed with benzamil application contributes to the fall in VT observed with application of this diuretic. As such, ENaC blockade reduces the lumen-negative VT by inhibiting conductive Na+ absorption and by stimulating H+ secretion by type A intercalated cells. In conclusion, 1) in CCDs from aldosterone-treated mice, benzamil application stimulates HCl secretion mediated by the apical H+-ATPase and a yet to be identified conductive Cl− transport pathway; 2) benzamil-induced HCl secretion is reversed with the application of stilbene inhibitors or H+-ATPase inhibitors to the perfusate; and 3) benzamil reduces VT not only by inhibiting conductive Na+ absorption, but also by stimulating H+ secretion.


1996 ◽  
Vol 271 (6) ◽  
pp. F1217-F1223 ◽  
Author(s):  
E. Siga ◽  
P. Houillier ◽  
B. Mandon ◽  
G. Moine ◽  
C. de Rouffignac

Calcitonin (CT) modulates rat intercalated cell (IC) functions of the rat cortical collecting duct (CCD) [E. Siga, B. Mandon, N. Roinel, and C. de Rouffignac. Am.J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F221-F227, 1993]. To characterize the specific function regulated by CT, rat CCDs were perfused in vitro. Total CO2 net fluxes (JtCO2, pmol.mm-1.min-1) and transepithelial voltage (Vt) were measured. Bath CT induced a significant tCO2 reabsorption. This effect was higher on CCDs harvested from acid-loaded than from control rats. When HCO3- secretion was blocked, CT also raised JtCO2 and Vt. When H+ secretion was blocked, CT was ineffective on JtCO2 and Vt. When HCO3- secretion was increased and H+ secretion was inhibited, CT did not change JtCO2, whereas isoproterenol (ISO) increased tCO2 secretion from -13.5 +/- 2.0 (control) to -19.0 +/- 2.4 (ISO). In rat CCD studied under these same preceding conditions plus luminal amiloride to block the Na(+)-dependent Vt, CT did not alter Vt, whereas ISO increased it by 4.5 +/- 0.7 mV. We conclude from these data that, in the rat CCD, calcitonin stimulates H+ secretion, likely by so-called alpha-intercalated (alpha-IC) cells, whereas ISO stimulates HCO3- secretion, likely by so-called beta-IC cells.


1996 ◽  
Vol 270 (3) ◽  
pp. F518-F530 ◽  
Author(s):  
I. D. Weiner ◽  
A. E. Milton

The role of H(+)-K(+)-adenosinetriphosphatase (H(+)-K(+)-ATPase) in the cortical collecting duct (CCD) B-type intercalated cell (B cell) is unclear. This study examined whether H(+)-K(+)-ATPase contributes to B cell intracellular pH (pHi) regulation and, if so, whether it is present at the apical or basolateral membrane. B cell Na(+)-independent pHi recovery from an acid load was only partially inhibited by peritubular N-ethylmaleimide (NEM). Complete inhibition required combining peritubular NEM either with luminal Sch-28080 or with luminal K+ removal. In contrast, neither peritubular Sch-28080 nor peritubular K+ removal altered pHi regulation. Tomato lectin, which binds to the gastric H(+)-K(+)-ATPase beta-subunit, labeled the B cell apical membrane. We conclude that the rabbit CCD B cell possesses an apical H(+)-K(+)-ATPase that plays an important role in pHi recovery from an in vitro acid load.


1987 ◽  
Vol 253 (6) ◽  
pp. F1142-F1156 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
C. C. Tisher

Recent studies suggest the presence of two populations of intercalated cells in the rabbit cortical collecting duct (CCD), one involved with hydrogen ion secretion and another that may play a role in bicarbonate secretion. The purpose of this study was to determine whether two populations of intercalated cells are present in the rat CCD and to establish their response to acute respiratory acidosis. Rats were studied during normal acid-base conditions and after 4-5 h of respiratory acidosis. In all animals light microscopy and transmission and scanning electron microscopy revealed two configurations of intercalated cells, type A with an extensive apical tubulovesicular membrane compartment and prominent surface microprojections and type B with a well-developed vesicular compartment and short sparse surface microprojections. By transmission electron microscopy, studs were present on the cytoplasmic face of the apical plasmalemma and tubulovesicular profiles of A cells. In respiratory acidosis there was a striking increase in apical microprojections and in the surface density of the apical membrane of type A cells similar to the response observed previously in intercalated cells in the outer medullary collecting duct (OMCD) studied under the same physiological conditions. No changes were observed in type B cells. Scanning electron microscopy revealed no change in the relative number of type A and type B cells in respiratory acidosis. We conclude that two distinct populations of intercalated cells exist in the rat CCD: type A, which resembles the intercalated cells in the OMCD, and type B. The response of type A cells to acute respiratory acidosis and the similarity between these cells and intercalated cells in the OMCD, which are believed to secrete hydrogen ion, suggest that the type A cells are involved in hydrogen ion secretion in the CCD.


Sign in / Sign up

Export Citation Format

Share Document