Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct

1987 ◽  
Vol 253 (6) ◽  
pp. F1142-F1156 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
C. C. Tisher

Recent studies suggest the presence of two populations of intercalated cells in the rabbit cortical collecting duct (CCD), one involved with hydrogen ion secretion and another that may play a role in bicarbonate secretion. The purpose of this study was to determine whether two populations of intercalated cells are present in the rat CCD and to establish their response to acute respiratory acidosis. Rats were studied during normal acid-base conditions and after 4-5 h of respiratory acidosis. In all animals light microscopy and transmission and scanning electron microscopy revealed two configurations of intercalated cells, type A with an extensive apical tubulovesicular membrane compartment and prominent surface microprojections and type B with a well-developed vesicular compartment and short sparse surface microprojections. By transmission electron microscopy, studs were present on the cytoplasmic face of the apical plasmalemma and tubulovesicular profiles of A cells. In respiratory acidosis there was a striking increase in apical microprojections and in the surface density of the apical membrane of type A cells similar to the response observed previously in intercalated cells in the outer medullary collecting duct (OMCD) studied under the same physiological conditions. No changes were observed in type B cells. Scanning electron microscopy revealed no change in the relative number of type A and type B cells in respiratory acidosis. We conclude that two distinct populations of intercalated cells exist in the rat CCD: type A, which resembles the intercalated cells in the OMCD, and type B. The response of type A cells to acute respiratory acidosis and the similarity between these cells and intercalated cells in the OMCD, which are believed to secrete hydrogen ion, suggest that the type A cells are involved in hydrogen ion secretion in the CCD.

1999 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
JIN KIM ◽  
YOUNG-HEE KIM ◽  
JUNG-HO CHA ◽  
C. CRAIG TISHER ◽  
KIRSTEN M. MADSEN

Abstract. At least two populations of intercalated cells, type A and type B, exist in the connecting tubule (CNT), initial collecting tubule (ICT), and cortical collecting duct (CCD). Type A intercalated cells secrete protons via an apical H+ - ATPase and reabsorb bicarbonate by a band 3-like Cl-/HCO3- exchanger, AE1, located in the basolateral plasma membrane. Type B intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger that is distinct from AE1 and remains to be identified. They express H+ -ATPase in the basolateral plasma membrane and in vesicles throughout the cytoplasm. A third type of intercalated cell with apical H+ -ATPase, but no AE1, has been described in the CNT and CCD of both rat and mouse. The prevalence of the third cell type is not known. The aim of this study was to characterize and quantify intercalated cell subtypes, including the newly described third non A-non B cell, in the CNT, ICT, and CCD of the rat and mouse. A triple immunolabeling procedure was developed in which antibodies to H+ -ATPase and band 3 protein were used to identify subpopulations of intercalated cells, and segment-specific antibodies were used to identify distal tubule and collecting duct segments. In both rat and mouse, intercalated cells constituted approximately 40% of the cells in the CNT, ICT, and CCD. Type A, type B, and non A-non B intercalated cells were observed in all of the three segments, with type A cells being the most prevalent in both species. In the mouse, however, non A-non B cells constituted more than half of the intercalated cells in the CNT, 39% in the ICT, and 22% in the CCD, compared with 14, 7, and 5%, respectively, in the rat. In contrast, type B intercalated cells accounted for only 8 to 16% of the intercalated cells in the three segments in the mouse compared with 26 to 39% in the rat. It is concluded that striking differences exist in the prevalence and distribution of the different types of intercalated cells in the CNT, ICT, and CCD of rat and mouse. In the rat, the non A-non B cells are fairly rare, whereas in the mouse, they constitute a major fraction of the intercalated cells, primarily at the expense of the type B intercalated cells.


2017 ◽  
Vol 313 (6) ◽  
pp. F1254-F1263 ◽  
Author(s):  
Aurélie Edwards ◽  
Gilles Crambert

The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl−/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl− transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.


1990 ◽  
Vol 1 (3) ◽  
pp. 245-256 ◽  
Author(s):  
J Kim ◽  
C C Tisher ◽  
P J Linser ◽  
K M Madsen

At least two configurations of intercalated cells, type A and type B, are present in the cortical collecting duct. Intercalated cells are rich in carbonic anhydrase. However, it is not known whether there are differences in the level and subcellular distribution of this enzyme between type A and type B intercalated cells. The purpose of this study was to determine the relative content and intracellular distribution of carbonic anhydrase II in the various subpopulations of intercalated cells in the rat collecting duct. A rabbit polyclonal antibody directed against mouse erythrocyte carbonic anhydrase II was employed to localize carbonic anhydrase, II by light and electron microscopy by an indirect immunoperoxidase method. A Western immunoblot analysis of homogenates of rat kidney cortex and medulla with the carbonic anhydrase II antibody revealed a single polypeptide band at 29 kDa corresponding to the molecular size of carbonic anhydrase II. By both light and electron microscopy, carbonic anhydrase II immunoreactivity was present in all intercalated cells but the intensity of staining was much greater in type A than in type B cells. In addition, immunostaining in type A cells was especially pronounced in the apical cytoplasm and apical microprojections whereas in type B cells, immunostaining was more diffuse throughout the cytoplasm. A third configuration of intercalated cell with diffuse immunostaining for carbonic anhydrase II was occasionally observed in the connecting segment. Very weak immunostaining was present in principal cells, whereas connecting tubule cells and inner medullary collecting duct cells were negative for carbonic anhydrase II.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 267 (6) ◽  
pp. F952-F964 ◽  
Author(s):  
I. D. Weiner ◽  
A. E. Weill ◽  
A. R. New

At least two cortical collecting duct (CCD) intercalated cell populations mediate HCO3- secretion and reabsorption. The present study examined the membrane location of intercalated cell Cl-/base exchange activity and the axial distribution of CCD intercalated cells. CCD were studied using in vitro microperfusion in CO2/HCO3(-)-containing solutions; intracellular pH was measured using 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. The A-type intercalated cell (A cell) and B-type intercalated cell (B cell) were identified functionally by the absence and presence of apical Cl-/HCO3- exchange activity, respectively. When a 0 mM Cl-, 0 mM HCO3- luminal solution was used, removal of Cl- from the peritubular solution caused intracellular alkalinization in all B cells. The alkalinization required neither extracellular Na+ nor changes in membrane potential. Peritubular 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (10(-4) M) inhibited A cell but not B cell basolateral Cl-/base exchange activity. In comparison to studies performed with a 0 mM Cl- 0 mM HCO3- luminal solution, the use of a 0 mM Cl-, 25 mM HCO3- luminal solution inhibited both the identification and the magnitude of B cell basolateral Cl-/base exchange activity. When CCD from the inner and outer cortex were separately studied, only 7% of outer CCD intercalated cells were A cells, whereas 93% were B cells. In contrast, in the inner CCD, 58% of intercalated cells were A cells and 42% were B cells. Under stop-flow conditions, outer CCD alkalinized the luminal fluid, whereas inner CCD acidified the luminal fluid. These results indicate that all CCD intercalated cells possess basolateral Cl-/base exchange activity; however, A cell and B cell basolateral Cl-/base exchange activity differs, at least in terms of sensitivity to DIDS. Furthermore, there is axial heterogeneity in both intercalated cell type and function.


1999 ◽  
Vol 277 (6) ◽  
pp. F957-F965 ◽  
Author(s):  
Hisato Sakamoto ◽  
Yoshikazu Sado ◽  
Ichiro Naito ◽  
Tae-Hwan Kwon ◽  
Shinichi Inoue ◽  
...  

To determine the immunolocalization of ClC-5 in the mouse kidney, we developed a ClC-5-specific rat monoclonal antibody. Immunoblotting demonstrated an 85-kDa band of ClC-5 in the kidney and ClC-5 transfected cells. Immunocytochemistry revealed significant labeling of ClC-5 in brush-border membrane and subapical intracellular vesicles of the proximal tubule. In addition, apical and cytoplasmic staining was observed in the type A intercalated cells in the cortical collecting duct. In contrast, the staining was minimal in the outer and inner medullary collecting ducts and the thick ascending limb. Western blotting of vesicles immunoisolated by the ClC-5 antibody showed the presence of H+-ATPase, strongly indicating that these two proteins were present in the same membranes. Double labeling with antibodies against ClC-5 and H+-ATPase and analysis by confocal images showed that ClC-5 and H+-ATPase colocalized in these ClC-5-positive cells. These findings suggest that ClC-5 might be involved in the endocytosis and/or the H+ secretion in the proximal tubule cells and the cortical collecting duct type A intercalated cells in mouse kidney.


1983 ◽  
Vol 245 (6) ◽  
pp. F670-F679 ◽  
Author(s):  
K. M. Madsen ◽  
C. C. Tisher

The collecting duct of the mammalian kidney is involved in urine acidification. Recent studies in the turtle bladder suggest that hydrogen ion secretion in response to elevated CO2 is regulated by insertion of hydrogen pumps into the luminal membrane of the mitochondria-rich cells. Because intercalated cells of the collecting duct are structurally similar to mitochondria-rich cells of the amphibian bladder, we studied the rat outer medullary collecting duct (OMCD) during respiratory acidosis to determine whether changes compatible with hydrogen ion secretion occur in the intercalated cells. Rats were studied during normal acid-base conditions and after 4-5 h of respiratory acidosis. After collection of physiologic data, the kidneys were fixed by in vivo perfusion and processed for electron microscopy. No changes were observed in the principal cells of the OMCD. Morphometric analysis revealed a significant increase in the surface density of the apical plasma membrane and a decrease in the number of tubulovesicular profiles in the apical region of the intercalated cells throughout the OMCD with respiratory acidosis. There were no changes in surface density of the basolateral membrane. These findings suggest that in response to respiratory acidosis there is transport of membrane from the tubulovesicular membrane compartment to the apical plasma membrane of the intercalated cells.


1992 ◽  
Vol 262 (6) ◽  
pp. F1015-F1022
Author(s):  
K. M. Madsen ◽  
J. Kim ◽  
C. C. Tisher

Intercalated cells (ICs) in the collecting duct and the connecting tubule (CNT) are involved in H+ secretion and HCO3- reabsorption. H+ secretion is mediated by an H(+)-adenosinetriphosphatase in the apical plasma membrane, whereas a band 3-like Cl(-)-HCO3- exchanger in the basolateral membrane is responsible for HCO3- reabsorption. Recent studies have reported that a band 3-like protein is also present in mitochondria in rabbit ICs. The purpose of this study was to establish the subcellular location of the band 3-like Cl(-)-HCO3- exchanger in rabbit ICs by electron microscopic immunocytochemistry using a monoclonal antibody, IVF12, against erythrocyte band 3 protein. Rabbit kidneys were preserved by in vivo perfusion with a paraformaldehyde-lysine-periodate solution and processed for immunocytochemistry using a horseradish peroxidase preembedding technique. Band 3 immunostaining was observed on the basolateral plasma membrane of ICs in the outer medullary collecting duct and type A cells in the cortical collecting duct (CCD) and CNT. In addition, distinct staining for band 3 was present in numerous small vesicles and in multivesicular bodies in type A ICs in the CCD and CNT. However, there was no evidence of band 3 immunostaining of mitochondria or of the apical plasma membrane in any cells of the collecting duct. These observations suggest that basolateral Cl(-)-HCO3- exchangers in type A ICs in the rabbit kidney are stored in intracellular vesicles and possibly degraded in the vascular-lysosomal system when these cells are in a resting state. The previously reported band 3 immunolabeling of mitochondria could not be confirmed.


2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Vladimir Pech ◽  
Wencui Zheng ◽  
Truyen D. Pham ◽  
Jill W. Verlander ◽  
Susan M. Wall

1988 ◽  
Vol 255 (1) ◽  
pp. F115-F125 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
P. S. Low ◽  
D. P. Allen ◽  
C. C. Tisher

Band 3 protein is the major anion transport protein of the erythrocyte cell membrane where it catalyzes the exchange of HCO3- for Cl-. There is evidence that band 3 protein is present in the collecting duct of both the rat and rabbit kidney. We used colloidal-gold immunocytochemistry to determine the ultrastructural location of band 3 protein in the rat cortical (CCD) and outer medullary collecting ducts (OMCD). Kidneys of normal Sprague-Dawley rats were fixed by intravascular perfusion with 1% glutaraldehyde and embedded in Lowicryl K4M. Two polyclonal antibodies raised in rabbits were used as the primary antibody in separate experiments, one against the 43-kDa fragment of the cytoplasmic domain of human erythrocyte band 3 protein and the other against rat erythrocyte band 3 protein. This was followed by exposure to gold-conjugated goat anti-rabbit immunoglobulin G. Transmission electron microscopy revealed gold particles along the basal and lateral plasma membranes of all intercalated cells of the OMCD. In the CCD, the basal and lateral plasma membranes of the type A intercalated cells only were labeled with gold particles. The type B intercalated cells and principal cells were devoid of gold particles, as were all cells of the proximal tubule, the distal convoluted tubule, and the thick ascending limb of the loop of Henle. We conclude that a Cl(-)-HCO3- transporter is present in the basal and lateral plasma membranes of the intercalated cells in the OMCD and the type A intercalated cells in the CCD. These findings provide further evidence that these intercalated cells are involved in H+ secretion in the OMCD and CCD of the rat. We have no evidence for the presence of band 3 protein in the type B intercalated cells of the CCD, which supports the hypothesis that type B cells are functionally and structurally distinct from type A cells.


1996 ◽  
Vol 270 (4) ◽  
pp. F575-F592 ◽  
Author(s):  
J. Kim ◽  
J. H. Cha ◽  
C. C. Tisher ◽  
K. M. Madsen

In the developing rat kidney, both type A and type B intercalated cells are present throughout the medullary collecting duct (MCD), as well as the papillary surface epithelium. After birth, intercalated cells gradually disappear from the papillary surface epithelium and the terminal MCD, and type B cells disappear from the entire MCD. The purpose of this study was to establish the mechanism(s) by which intercalated cells are deleted from the MCD during development. Kidneys from 14-, 16-, 18-, and 20-day-old fetuses and 1-, 3-, 7-, and 14-day-old pups were preserved for light microscopic immunohistochemistry and electron microscopy. Intercalated cells were identified by immunostaining for H(+)-adenosinetriphosphatase (H(+)-ATPase) and band 3 protein. Apoptosis was identified by nick end labeling of DNA fragments, staining with the vital dye toluidine blue, and transmission electron microscopy. Two distinct mechanisms of elimination of intercalated cells were detected. Cells with apical labeling for H(+)-ATPase and basolateral labeling for band 3 protein protruded into the lumen of the MCD as if they were being extruded from the epithelium, and many had lost contact with the basement membrane. Extrusion of the cells with basolateral H(+)-ATPase or with no labeling for H(+)-ATPase was never observed. Apoptosis was observed in the MCD from shortly before birth to 7 days after birth, gradually progressing from the papillary tip toward the outer medulla. Staining for apoptosis was present in H(+)-ATPase-positive apoptotic bodies, located in cells that were negative for H(+)-ATPase. Staining was also occasionally observed in apoptotic cells with basolateral H(+)-ATPase but never in cells with apical H(+)-ATPase. Electron microscopy confirmed the presence of apoptotic intercalated cells in the MCD and demonstrated that apoptotic bodies were located in inner medullary collecting duct (IMCD) cells and principal cells. These results demonstrate that intercalated cells are deleted from the MCD by two distinct mechanisms, one involving apoptosis and subsequent phagocytosis by neighboring principal cells or IMCD cells. Elimination by extrusion affects only type A intercalated cells, whereas deletion by apoptosis appears to occur only in type B intercalated cells.


Sign in / Sign up

Export Citation Format

Share Document