Hypoxic-hypercapnic interaction in subjects with bilateral cerebral dysfunction

1963 ◽  
Vol 18 (6) ◽  
pp. 1139-1145 ◽  
Author(s):  
Fred Plum ◽  
Harold W. Brown

To analyze cerebral influences modifying autonomic respiratory responses, we compared normals and patients with bilateral pyramidal tract disease for their ventilatory response to hypoxia and hypoxia-hypercapnia. During eucapnia, the two groups showed similar hypoxic responses. During hypercapnia, the ventilatory response to hypoxia was greater in the brain-damaged subjects. This apparent augmentation, however, was due entirely to anoxia interacting with an abnormally facilitated carbon dioxide sensitivity: compared with normals, brain-damaged patients at PaOO2 90–100 mm Hg showed an 85% greater CO2 response, and at PaOO2 50 mm Hg showed a 79% greater CO2 response. Since cerebral dysfunction facilitated the ventilatory response to hypoxia-hypercapnia combined but not the response to hypoxia alone, the results imply that the two respiratory stimuli interact centrally rather than peripherally. respiration; brain damage; interaction; carbon dioxide response; forebrain effects; ventilation with CNS disease Submitted on February 18, 1963

1998 ◽  
Vol 89 (3) ◽  
pp. 642-647. ◽  
Author(s):  
H. Daniel Babenco ◽  
Robert T. Blouin ◽  
Pattilyn F. Conard ◽  
Jeffrey B. Gross

Background Diphenhydramine is used as an antipruritic and antiemetic in patients receiving opioids. Whether it might exacerbate opioid-induced ventilatory depression has not been determined. Methods The ventilatory response to carbon dioxide during hyperoxia and the ventilatory response to hypoxia during hypercapnia (end-tidal pressure of carbon dioxide [PETCO2] is approximately equal to 54 mmHg) were determined in eight healthy volunteers. Ventilatory responses to carbon dioxide and hypoxia were calculated at baseline and during an alfentanil infusion (estimated blood levels approximately equal to 10 ng/ml) before and after diphenhydramine 0.7 mg/kg. Results The slope of the ventilatory response to carbon dioxide decreased from 1.08+/-0.38 to 0.79+/-0.36 l x min(-1) x mmHg(-1) (x +/- SD, P < 0.05) during alfentanil infusion; after diphenhydramine, the slope increased to 1.17+/-0.28 l x min(-1) x mmHg(-1) (P < 0.05). The minute ventilation (VE) at PETCO2 approximately equal to 46 mmHg (VE46) decreased from 12.1+/-3.7 to 9.7+/-3.6 l/min (P < 0.05) and the VE at 54 mmHg (VE54) decreased from 21.3+/-4.8 to 16.6+/-4.7 l/min during alfentanil (P < 0.05). After diphenhydramine, (VE46 did not change significantly, remaining lower than baseline at 9.9+/-2.9 l/min (P < 0.05), whereas VE54 increased significantly to 20.5+/-3.0 l/min. During hypoxia, VE at SpO2 = 90% (VE90) decreased from 30.5+/-9.7 to 23.1+/-6.9 l/min during alfentanil (P < 0.05). After diphenhydramine, the increase in VE90 to 27.2+/-9.2 l/min was not significant (P = 0.06). Conclusions Diphenhydramine counteracts the alfentanil-induced decrease in the slope of the ventilatory response to carbon dioxide. However, at PETCO2 = 46 mmHg, it does not significantly alter the alfentanil-induced shift in the carbon dioxide response curve. In addition, diphenhydramine does not exacerbate the opioid-induced depression of the hypoxic ventilatory response during moderate hypercarbia.


2004 ◽  
Vol 96 (3) ◽  
pp. 1197-1205 ◽  
Author(s):  
Jason H. Mateika ◽  
Chris Mendello ◽  
Dany Obeid ◽  
M. Safwan Badr

We hypothesized that the acute ventilatory response to hypoxia is enhanced after exposure to episodic hypoxia in awake humans. Eleven subjects completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then breathed from a bag containing normocapnic (42 Torr), low (50 Torr), or high oxygen (140 Torr) gas mixtures. During the trials, PetCO2 increased while a constant oxygen level was maintained. The point at which ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the ventilatory recruitment threshold. The ventilatory response below and above the recruitment threshold was determined. Ventilation did not persist above baseline values immediately after exposure to episodic hypoxia; however, PetCO2 levels were reduced compared with baseline. In contrast, compared with baseline, the ventilatory response to progressive increases in carbon dioxide during rebreathing trials in the presence of low but not high oxygen levels was increased after exposure to episodic hypoxia. This increase occurred when carbon dioxide levels were above but not below the ventilatory recruitment threshold. We conclude that long-term facilitation of ventilation (i.e., increases in ventilation that persist when normoxia is restored after episodic hypoxia) is not expressed in awake humans in the presence of hypocapnia. Nevertheless, despite this lack of expression, the acute ventilatory response to hypoxia in the presence of hypercapnia is increased after exposure to episodic hypoxia.


1997 ◽  
Vol 22 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Theodore Rapanos ◽  
James Duffin

The ventilatory response to acute progressive hypoxia below the carbon dioxide threshold using rebreathing was investigated. Nine subjects rebreathed after 5 min of hyperventilation to lower carbon dioxide stores. The rebreathing bag initially contained enough carbon dioxide to equilibrate alveolar and arterial partial pressures of carbon dioxide to the lowered mixed venous partial pressure (≈ 30 mmHg), and enough oxygen to establish a chosen end-tidal partial pressure (50-70 mmHg), within one circulation time. During rebreathing, end-tidal partial pressure of carbon dioxide increased while end-tidal partial pressure of oxygen fell. Ventilation increased linearly with end-tidal carbon dioxide above a mean end-tidal partial pressure threshold of 39 ± 2.7 mmHg. Below this peripheral-chemoreflex threshold, ventilation did not increase, despite a progressive fall in end-tidal oxygen partial pressure to a mean of 37 ± 4.1 mmHg. In Conclusion, hypoxia does not stimulate ventilation when carbon dioxide is below its peripheral-chemoreflex threshold. Key words: peripheral chemoreflex, rebreathing technique, hyperventilation


1970 ◽  
Vol 39 (5) ◽  
pp. 653-662 ◽  
Author(s):  
T. K. C. King ◽  
D. Yu

1. The ventilatory response to carbon dioxide was measured in a group of patients with chronic obstructive airways disease using a rebreathing method. 2. The slope of the carbon dioxide response curve was obtained by plotting the ventilation at successive half minutes against the corresponding mean end tidal Pco2. 3. The slope of the carbon dioxide response curve was positively correlated with (a) the FEV1 and (b) the reciprocal of the resting arterial Pco2, both these correlations being statistically significant. 4. Reference to FEV1 alone could explain more than 80% of the variation in the slope of the CO2 response curve. This explained variation was not significantly improved by the additional consideration of the resting arterial Pco2. 5. It was suggested that whatever the underlying complex mechanisms that determine the response to CO2, the FEV1 can be used as an empirical factor for the prediction of this response in patients with chronic obstructive airways disease.


1997 ◽  
Vol 86 (6) ◽  
pp. 1342-1349 ◽  
Author(s):  
Aad Berkenbosch ◽  
Luc J. Teppema ◽  
Cees N. Olievier ◽  
Albert Dahan

Background The ventilatory response to hypoxia is composed of the stimulatory activity from peripheral chemoreceptors and a depressant effect from within the central nervous system. Morphine induces respiratory depression by affecting the peripheral and central carbon dioxide chemoreflex loops. There are only few reports on its effect on the hypoxic response. Thus the authors assessed the effect of morphine on the isocapnic ventilatory response to hypoxia in eight cats anesthetized with alpha-chloralose-urethan and on the ventilatory carbon dioxide sensitivities of the central and peripheral chemoreflex loops. Methods The steady-state ventilatory responses to six levels of end-tidal oxygen tension (PO2) ranging from 375 to 45 mmHg were measured at constant end-tidal carbon dioxide tension (P[ET]CO2, 41 mmHg) before and after intravenous administration of morphine hydrochloride (0.15 mg/kg). Each oxygen response was fitted to an exponential function characterized by the hypoxic sensitivity and a shape parameter. The hypercapnic ventilatory responses, determined before and after administration of morphine hydrochloride, were separated into a slow central and a fast peripheral component characterized by a carbon dioxide sensitivity and a single offset B (apneic threshold). Results At constant P(ET)CO2, morphine decreased ventilation during hyperoxia from 1,260 +/- 140 ml/min to 530 +/- 110 ml/ min (P < 0.01). The hypoxic sensitivity and shape parameter did not differ from control. The ventilatory response to carbon dioxide was displaced to higher P(ET)CO2 levels, and the apneic threshold increased by 6 mmHg (P < 0.01). The central and peripheral carbon dioxide sensitivities decreased by about 30% (P < 0.01). Their ratio (peripheral carbon dioxide sensitivity:central carbon dioxide sensitivity) did not differ for the treatments (control = 0.165 +/- 0.105; morphine = 0.161 +/- 0.084). Conclusions Morphine depresses ventilation at hyperoxia but does not depress the steady-state increase in ventilation due to hypoxia. The authors speculate that morphine reduces the central depressant effect of hypoxia and the peripheral carbon dioxide sensitivity at hyperoxia.


2017 ◽  
Vol 95 (6) ◽  
pp. 681-685 ◽  
Author(s):  
Nina P. Aleksandrova ◽  
Galina A. Danilova ◽  
Viacheslav G. Aleksandrov

We investigated the effect of the major inflammatory cytokine interleukin-1beta (IL-1β) on the ventilatory response to hypoxia. The goal was to test the hypothesis that IL-1β impairs the hypoxic ventilatory response in vivo by indirectly inhibiting respiratory neurons in the brainstem via prostaglandins. Thus, IL-1β was delivered by cerebroventricular injection, and the ventilatory hypoxic response was assessed in anesthetized, spontaneously breathing rats pretreated with or without diclofenac, a nonspecific inhibitor of prostaglandin synthesis. We found that the slope of the ventilatory response to hypoxia decreased almost 2-fold from 10.4 ± 3.02 to 4.06 ± 0.86 mL·min−1·(mm Hg)−1 (–61%) 90 min after administration of IL-1β (p < 0.05). The slope of tidal volume and mean inspiratory flow also decreased from 0.074 ± 0.02 to 0.039 ± 0.01 mL·(mm Hg)−1 (–45%, p < 0.05), and from 0.36 ± 0.07 to 0.2 ± 0.04 mL·s−1·(mm Hg)−1 (–46%, p < 0.05), respectively. Pretreatment with diclofenac blocked these effects. Thus, the data indicate that IL-1β degrades the ventilatory hypoxic response by stimulating production of prostaglandin. The increase of cerebral levels of IL-1β, which is induced by the activation of immune cells in the brain, may impair respiratory chemoreflexes.


2000 ◽  
Vol 92 (2) ◽  
pp. 393-393 ◽  
Author(s):  
H. Daniel Babenco ◽  
Pattilyn F. Conard ◽  
Jeffrey B. Gross

Background In doses typically administered during conscious sedation, remifentanil may be associated with ventilatory depression. However, the time course of ventilatory depression after an initial dose of remifentanil has not been determined previously. Methods In eight healthy volunteers, the authors determined the time course of the ventilatory response to carbon dioxide using the dual isohypercapnic technique. Subjects breathed via mask from a to-and-fro circuit with variable carbon dioxide absorption, allowing the authors to maintain end-tidal pressure of carbon dioxide (PET(CO2)) at approximately 46 or 56 mm Hg (alternate subjects). After 6 min of equilibration, subjects received 0.5 microg/kg remifentanil over 5 s, and minute ventilation (V(E)) was recorded during the next 20 min. Two hours later, the study was repeated using the other carbon dioxide tension (56 or 46 mm Hg). The V(E) data were used to construct two-point carbon dioxide response curves at 30-s intervals after remifentanil administration. Using published pharmacokinetic values for remifentanil and the method of collapsing hysteresis loops, the authors estimated the effect-site equilibration rate constant (k(eo)), the effect-site concentration producing 50% respiratory depression (EC50), and the shape parameter of the concentration-response curve (gamma). Results The slope of the carbon dioxide response decreased from 0.99 [95% confidence limits 0.72 to 1.26] to a nadir of 0.27 l x min(-1) x mm Hg(-1) [-0.12 to 0.66] 2 min after remifentanil (P&lt;0.001); within 5 min, it recovered to approximately 0.6 l x min(-1) x mm Hg(-1), and within 15 min of injection, slope returned to baseline. The computed ventilation at PET = 50 mm Hg (VE50) decreased from 12.9 [9.8 to 15.9] to 6.1 l/min [4.8 to 7.4] 2.5 min after remifentanil injection (P&lt;0.001). This was caused primarily by a decrease in tidal volume rather than in respiratory rate. Estimated pharmacodynamic parameters based on computed mean values of VE50 included k(eo) = 0.24 min(-1) (T1/2 = 2.9 min), EC50 = 1.12 ng/ml, and gamma = 1.74. Conclusions After administration of 0.5 microg/kg remifentanil, there was a decrease in slope and downward shift of the carbon dioxide ventilatory response curve. This reached its nadir approximately 2.5 min after injection, consistent with the computed onset half-time of 2.9 min. The onset of respiratory depression appears to be somewhat slower than previously reported for the onset of remifentanil-induced electroencephalographic slowing. Recovery of ventilatory drive after a small dose essentially was complete within 15 min.


1995 ◽  
Vol 83 (3) ◽  
pp. 478-490. ◽  
Author(s):  
Maarten van den Elsen ◽  
Albert Dahan ◽  
Jacob DeGoede ◽  
Aad Berkenbosch ◽  
Jack van Kleef

Background The purpose of this study was to quantify in humans the effects of subanesthetic isoflurane on the ventilatory control system, in particular on the peripheral chemoreflex loop. Therefore we studied the dynamic ventilatory response to carbon dioxide, the effect of isoflurane wash-in upon sustained hypoxic steady-state ventilation, and the ventilatory response at the onset of 20 min of isocapnic hypoxia. Methods Study 1: Square-wave changes in end-tidal carbon dioxide tension (7.5-11.5 mmHg) were performed in eight healthy volunteers at 0 and 0.1 minimum alveolar concentration (MAC) isoflurane. Each hypercapnic response was separated into a fast, peripheral component and a slow, central component, characterized by a time constant, carbon dioxide sensitivity, time delay, and off-set (apneic threshold). Study 2: The ventilatory changes due to the wash-in of 0.1 MAC isoflurane, 15 min after the induction of isocapnic hypoxia, were studied in 11 healthy volunteers. Study 3: The ventilatory responses to a step decrease in end-tidal oxygen (end-tidal oxygen tension from 110 to 44 mmHg within 3-4 breaths; duration of hypoxia 20 min) were assessed in eight healthy volunteers at 0, 0.1, and 0.2 MAC isoflurane. Results Values are reported as means +/- SF. Study 1: The peripheral carbon dioxide sensitivities averaged 0.50 +/- 0.08 (control) and 0.28 +/- 0.05 l.min-1.mmHg-1 (isoflurane; P &lt; 0.01). The central carbon dioxide sensitivities (control 1.20 +/- 0.12 vs. isoflurane 1.04 +/- 0.11 l.min-1.mmHg-1) and off-sets (control 36.0 +/- 0.1 mmHg vs. isoflurane 34.5 +/- 0.2 mmHg) did not differ between treatments. Study 2: Within 30 s of exposure to 0.1 MAC isoflurane, ventilation decreased significantly, from 17.7 +/- 1.6 (hypoxia, awake) to 15.0 +/- 1.5 l.min-1 (hypoxia, isoflurane). Study 3: At the initiation of hypoxia ventilation increased by 7.7 +/- 1.4 (control), 4.1 +/- 0.8 (0.1 MAC; P &lt; 0.05 vs. control), and 2.8 +/- 0.6 (0.2 MAC; P &lt; 0.05 vs. control) l.min-1. The subsequent ventilatory decrease averaged 4.9 +/- 0.8 (control), 3.4 +/- 0.5 (0.1 MAC; difference not statistically significant), and 2.0 +/- 0.4 (0.2 MAC; P &lt; 0.05 vs. control) l.min-1. There was a good correlation between the acute hypoxic response and the hypoxic ventilatory decrease (r = 0.9; P &lt; 0.001). Conclusions The results of all three studies indicate a selective and profound effect of subanesthetic isoflurane on the peripheral chemoreflex loop at the site of the peripheral chemoreceptors. We relate the reduction of the ventilatory decrease of sustained hypoxia to the decrease of the initial ventilatory response to hypoxia.


PEDIATRICS ◽  
1975 ◽  
Vol 55 (5) ◽  
pp. 614-620 ◽  
Author(s):  
Henrique Rigatto ◽  
June P. Brady ◽  
Rafael de la Torre Verduzco

We studied nine "healthy" preterm infants (birthweight, 1,000 to 2,000 gm) 58 times during postnatal life to define the effects of gestational and postnatal age on the ventilatory response to carbon dioxide. The infants were given air and 2% and 4% carbon dioxide in air to breathe for five minutes each. We determined respiratory minute and tidal volumes, frequency, heart rate, and alveolar Pco2 and Po2. We measured ventilation with a nosepiece and a screen flowmeter, using a constant flow-through to eliminate valves and reduce dead space. Analyses were made during the fifth minute while the baby breathed the various gas mixtures. The slope of the carbon dioxide response increased 42% from 32 to 37 weeks gestation (P &lt; .05) and 62% from 2 to 27 days of age (P &lt; .025). However, the intercept at .3 liter/mm/kg was the same at different gestational ages, but significantly greater at 2 compared with 27 days of age (P &lt; .05). We suggest that the unresponsiveness with increasing prematurity is primarily central and that after birth is primarily dependent on the mechanical abnormalities of the lung.


Sign in / Sign up

Export Citation Format

Share Document