Influence of exercise and CO2 on breathing pattern of normal man

1979 ◽  
Vol 47 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. Askanazi ◽  
J. Milic-Emili ◽  
J. R. Broell ◽  
A. I. Hyman ◽  
J. M. Kinney

Ventilatory patterns during rest, CO2 inhalation (2, 3, and 4%) and three levels of exercise were analyzed in supine men using a canopy system for noninvasive measurements. Changes in tidal volume (VT) and breathing frequency (f) with equal increases in minute ventilation (VE) differed significantly during exercise and CO2 inhalation. Increases in VE during exercise was accompanied by increases in VT and f. During CO2 inhalation, the change in frequency was less than during exercise. However, when analyzed in terms of inspiratory flow (VT/TI) and inspiratory duty cycle (TI/Ttot), the response to both stimuli was similar. With increases to twice control VE both TI/Ttot and VT/VI increased. Thereafter only VTTI increased with increasing VE. At rest, inspiratory time on a breath by breath basis increased minimally with VT, while changes in inspiratory flow accounted for the variability in VT. These two respiratory stimulants appear to increase ventilation through different mechanisms when analyzed in terms of VT and f. However, changes in inspiratory flow and duty cycle are similar in both.

1984 ◽  
Vol 57 (2) ◽  
pp. 475-480 ◽  
Author(s):  
C. Weissman ◽  
J. Askanazi ◽  
J. Milic-Emili ◽  
J. M. Kinney

A mouthpiece plus noseclip (MP & NC) is frequently used in performing measurements of breathing patterns. Although the effects the apparatus exerts on breathing patterns have been studied, the mechanism of the changes it causes remains unclear. The current study examines the effects on respiratory patterns of a standard (17-mm-diam) MP & NC during room air (RA) breathing and the administration of 2 and 4% CO2 in normal volunteers and in patients 2–4 days after abdominal operation. When compared with values obtained with a noninvasive canopy system, the MP & NC induced increases in minute ventilation (VE), tidal volume (VT), and mean inspiratory flow (VT/TI), but not frequency (f) or inspiratory duty cycle, during both RA and CO2 administration. The percentage increase in VE, VT, and VT/TI caused by the MP & NC decreased as the concentration of CO2 increased. During RA breathing, the application of noseclip alone resulted in a decrease in f and an increase in VT, but VE and VT/TI were unchanged. The changes were attenuated during the administration of 2 and 4% CO2. Reducing the diameter of the mouthpiece to 9 mm abolished the alterations in breathing pattern observed with the larger (17-mm) diameter MP.


1996 ◽  
Vol 80 (5) ◽  
pp. 1772-1784 ◽  
Author(s):  
J. A. Spahija ◽  
A. Grassino

To examine the effect of pursed-lips breathing (PLB) on breathing pattern and respiratory mechanics, we studied 11 healthy subjects breathing with and without PLB at rest and during steady-state bicycle exercise. Six of these subjects took part in a second study, which compared the effects of PLB to expiratory resistive loading (ERL). PLB was found to prolong expiratory and total breath durations and to promote a slower and deeper breathing pattern. During exercise, the compensatory increase that occurred in tidal volume was not sufficient to counter the reduction in breathing frequency, causing minute ventilation to be reduced. Although ERL similarly caused minute ventilation and breathing frequency to be decreased, unlike PLB, it produced no change in tidal volume and prolonged expiratory and total breath durations to a lesser extent. PLB and ERL increased the expiratory resistance to a comparable degree, also increasing the expiratory resistive work of breathing and promoting greater expiratory rib cage and abdominal muscle recruitment in response to the expiratory loads. End-expiratory lung volume, which was determined from inspiratory capacity maneuvers, was not altered by PLB; however, with ERL it was increased by 0.20 and 0.24 liter during rest and exercise, respectively. Inspiratory muscle recruitment patterns were not altered by PLB at rest, although small increases in the relative contribution of the rib cage/accessory muscles in conjunction with abdominal muscle relaxation occurred during exercise. Similar trends were observed with ERL. We conclude that, although ERL and PLB induce comparable respiratory muscle recruitment responses, they are not equivalent with respect to breathing pattern changes and effect on end-expiratory lung volume.


1985 ◽  
Vol 59 (5) ◽  
pp. 1515-1520 ◽  
Author(s):  
W. Perez ◽  
M. J. Tobin

Employment of mouthpiece and noseclips (MP + NC) has repeatedly been shown to increase tidal volume (VT), but its effect on respiratory frequency (f) and its subsets is controversial. The mechanisms accounting for this alteration in breathing pattern are poorly understood and may include stimulation of oral or nasal sensory receptors or alteration in the route of breathing. In this study we demonstrated that use of a MP + NC, compared with nonobtrusive measurement with a calibrated respiratory inductive plethysmograph, alters the majority of the volume and time indexes of breathing pattern, with increases in minute ventilation (P less than 0.01), VT (P less than 0.001), inspiratory time (TI, P less than 0.05), expiratory time (TE, P less than 0.05), mean inspiratory flow (P less than 0.05), and mean expiratory flow (P less than 0.05) and a decrease in f(P less than 0.05). Separating the potential mechanisms we found that when the respiratory route was not altered, independent oral stimulation (using an occluded MP) or nasal stimulation (by applying paper clips to the alae nasi) did not change the breathing pattern. In contrast, obligatory oral breathing without additional stimulation of the oral or nasal sensory receptors caused increases in VT (P less than 0.05), TI (P less than 0.05), and TE (P less than 0.01) and a fall in f(P less than 0.05). Heating and humidifying the inspired air did not prevent the alteration in breathing pattern with a MP. Thus change in the respiratory route is the major determinant of the alteration in breathing pattern with a MP + NC.


1985 ◽  
Vol 59 (3) ◽  
pp. 869-874 ◽  
Author(s):  
M. A. Bureau ◽  
J. Lamarche ◽  
P. Foulon ◽  
D. Dalle

The contribution of the carotid body chemoreceptor to postnatal maturation of breathing was evaluated in lambs from 7 to 70 days of age. The study was conducted by comparing the eupneic ventilation and resting pneumograms in intact conscious lambs with those of lambs that were carotid body chemodenervated (CBD) at birth. In comparison to the 1-wk-old intact lambs, the CBD lambs had significant decreases in minute ventilation (VE, 313 vs. 517 ml/kg), tidal volume (VT, 7.2 vs. 10.5 ml/kg), respiratory rate (f, 44 vs. 51 breaths/min), and occlusion pressure (P0.1, 2.8 vs. 7.2 cmH2O). Arterial PO2's were 59 vs. 75 Torr (P less than 0.05) and arterial PCO2's 47 vs. 36 Torr (P less than 0.05), respectively, in CBD and intact lambs. In intact lambs from 7 to 70 days, resting VE decreased progressively from 517 to 274 ml/kg (P less than 0.01) due to a fall in VT, mean inspiratory flow (VT/TI), and f, whereas the ratio of inspiratory time to total breath duration remained constant. P0.1 decreased from 7.2 to 3.9 cmH2O from 7 to 42 days. In contrast the CBD lambs experienced only minimal changes in VE, VT, VT/TI, and f during the same period. VE only decreased from 313 to 218 and P0.1 from 2.8 to 2.4 cmH2O. In contrast to that of intact lambs the resting pneumogram of CBD lambs remained relatively fixed from 7 to 70 days. Three CBD lambs died unexpectedly, without apparent cause, in the 4th and 5th wk of life.


1985 ◽  
Vol 59 (4) ◽  
pp. 1090-1097 ◽  
Author(s):  
P. A. Easton ◽  
C. Jadue ◽  
M. E. Arnup ◽  
R. C. Meatherall ◽  
N. R. Anthonisen

To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.


1980 ◽  
Vol 48 (4) ◽  
pp. 577-580 ◽  
Author(s):  
J. Askanazi ◽  
P. A. Silverberg ◽  
R. J. Foster ◽  
A. I. Hyman ◽  
J. Milic-Emili ◽  
...  

The effects of ventilatory apparatus on breathing pattern and gas exchange were studied in normal supine subjects. Using a canopy system, measurements of O2 consumption, CO2 production, tidal volume (VT), frequency (f), minute ventilation, mean inspiratory flow, and inspiratory, and expiratory time (TI and TE) were made and compared to data obtained with the use of a mask (m) and mouthpiece plus noseclip (mp + nc). Use of the m or mp + nc caused a 32.5 and 15.5% increase in VT, respectively, whereas f, TI, and TE remained unchanged. As TI did not change the increase in VT was caused entirely by increased inspiratory flow.


1992 ◽  
Vol 72 (3) ◽  
pp. 842-850 ◽  
Author(s):  
F. Cerny ◽  
L. Armitage ◽  
J. A. Hirsch ◽  
B. Bishop

We hypothesized that the hyperinflation and pulmonary dysfunction of cystic fibrosis (CF) would distort feedback and therefore alter the abdominal muscle response to graded expiratory threshold loads (ETLs). We compared the respiratory and abdominal muscle responses with graded ETLs of seven CF patients with severe lung dysfunction with those of matched healthy control subjects in the supine and 60 degrees head-up positions. Breathing frequency, tidal volume, and ventilatory timing were determined from inspiratory flow recordings. Abdominal electromyograms (EMGs) were detected with surface electrodes placed unilaterally over the external and internal oblique and the rectus abdominis muscles. Thresholds, times of onset, and durations of phasic abdominal activity were determined from raw EMGs; peak amplitudes were determined from integrated EMGs. Graded ETLs were imposed by submerging a tube from the expiratory port of the breathing valve into a column of water at depths of 0–25 cmH2O. We found that breathing frequency, tidal volume, and expired minute ventilation were higher in CF patients than in control subjects during low ETLs; a change in body position did not alter these ventilatory responses in the CF patients but did in the control subjects. All CF patients, but none of the control subjects, had tonic abdominal activity while supine. CF patients recruited abdominal muscles at lower loads, earlier in the respiratory cycle, and to a higher recruitment level in both positions than the control subjects, but burst duration of phasic activity was not different between groups.(ABSTRACT TRUNCATED AT 250 WORDS)


PEDIATRICS ◽  
1984 ◽  
Vol 73 (5) ◽  
pp. 652-655
Author(s):  
Jonathan M. Couriel ◽  
Anthony Olinsky

The ventilatory response to acute hypercapnia was studied in 68 parents of victims of sudden infant death syndrome and 56 control subjects. Tidal volume, inspiratory time, and total respiratory cycle time were measured before and immediately after a vital capacity breath of 13% CO2 in oxygen. Instantaneous minute ventilation, mean inspiratory flow (tidal volume/inspiratory time), and respiratory timing (inspiratory time/total respiratory cycle time) were calculated. Both groups of subjects showed a marked increase in tidal volume (48.4% ± 26.5%), instantaneous minute ventilation (56% ± 35%), and tidal volume/inspiratory time (56.8% ± 33.5%) after inhalation of the test gas, with little change in inspiratory time/total respiratory cycle time. There were no significant differences between the two groups for ventilation before or after inhalation of the test gas. The ventilatory response to acute hypercapnia is mediated by the peripheral chemoreceptors. These results suggest that an inherited abnormality of peripheral chemoreceptor function is unlikely to be a factor leading to sudden infant death syndrome.


1979 ◽  
Vol 46 (5) ◽  
pp. 998-1002 ◽  
Author(s):  
G. G. Haddad ◽  
R. A. Epstein ◽  
M. A. Epstein ◽  
H. L. Leistner ◽  
P. A. Marino ◽  
...  

Noninvasive studies of ventilation and ventilatory pattern were performed serially in 15 normal infants in the first 4 mo of life during REM and quiet sleep with the barometric method. We measured tidal volume (VT), total respiratory cycle time (Ttot), inspiratory time (Ti), expiratory time (TE), mean inspiratory flow (VT/TI), and respiratory “duty cycle” (TI/Ttot). Vt, Ttot, TI, TE, VT/TI, and VT/Ttot but not TI/Ttot increased with age. In all age groups, Ttot, TI, and TE but not VT/TI were greater in quiet than in REM sleep. In the first 2 mo of life, VT was greater in quiet than in REM sleep; in the older infants, VT/Ttot was smaller in quiet than in REM sleep. TI/Ttot was not dependent on sleep state. Thus, because VT/Ttot = VT/TI X TI/Ttot, the increase in VT/Ttot with age results from an increase in mean inspiratory flow rather than from changes in respiratory “duty cycle”. Further, the “on-switching” as well as the “off-switching” of inspiratory activity depends on sleep state.


1994 ◽  
Vol 77 (6) ◽  
pp. 2703-2708 ◽  
Author(s):  
H. Burnet ◽  
M. Bascou-Bussac ◽  
C. Martin ◽  
Y. Jammes

In mechanically ventilated patients the natural gas-conditioning process of the upper airways is bypassed by the use of an endotracheal tube or a tracheostomy. We hypothesized that under these conditions the breathing pattern may greatly influence the convective respiratory heat loss (Cr). Cr values were computed from minute ventilation (VE) and inspiratory and expiratory gas temperatures, which were measured in six patients under mechanical ventilation for the management of cranial trauma. In each patient the effects of 11–20 different breathing patterns were investigated. Relationships between Cr and VE and between combined tidal volume and respiratory frequency were obtained by simple and multiple linear regression methods, respectively. Comparison of the standard errors of estimate indicated that multiple linear regression gives the best fit. Thus, Cr was highly dependent on the breathing pattern and was not related only to VE. For the same VE value, Cr was higher when VE was achieved with high tidal volume and low respiratory frequency. These data are consistent with previous studies in which thermal exchanges through the upper airways were taxed by hyperventilation of frigid air.


Sign in / Sign up

Export Citation Format

Share Document