Effects of upper or lower airway anesthesia on hypercapnic ventilation in humans

1985 ◽  
Vol 59 (4) ◽  
pp. 1090-1097 ◽  
Author(s):  
P. A. Easton ◽  
C. Jadue ◽  
M. E. Arnup ◽  
R. C. Meatherall ◽  
N. R. Anthonisen

To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.

1985 ◽  
Vol 59 (5) ◽  
pp. 1515-1520 ◽  
Author(s):  
W. Perez ◽  
M. J. Tobin

Employment of mouthpiece and noseclips (MP + NC) has repeatedly been shown to increase tidal volume (VT), but its effect on respiratory frequency (f) and its subsets is controversial. The mechanisms accounting for this alteration in breathing pattern are poorly understood and may include stimulation of oral or nasal sensory receptors or alteration in the route of breathing. In this study we demonstrated that use of a MP + NC, compared with nonobtrusive measurement with a calibrated respiratory inductive plethysmograph, alters the majority of the volume and time indexes of breathing pattern, with increases in minute ventilation (P less than 0.01), VT (P less than 0.001), inspiratory time (TI, P less than 0.05), expiratory time (TE, P less than 0.05), mean inspiratory flow (P less than 0.05), and mean expiratory flow (P less than 0.05) and a decrease in f(P less than 0.05). Separating the potential mechanisms we found that when the respiratory route was not altered, independent oral stimulation (using an occluded MP) or nasal stimulation (by applying paper clips to the alae nasi) did not change the breathing pattern. In contrast, obligatory oral breathing without additional stimulation of the oral or nasal sensory receptors caused increases in VT (P less than 0.05), TI (P less than 0.05), and TE (P less than 0.01) and a fall in f(P less than 0.05). Heating and humidifying the inspired air did not prevent the alteration in breathing pattern with a MP. Thus change in the respiratory route is the major determinant of the alteration in breathing pattern with a MP + NC.


1979 ◽  
Vol 47 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. Askanazi ◽  
J. Milic-Emili ◽  
J. R. Broell ◽  
A. I. Hyman ◽  
J. M. Kinney

Ventilatory patterns during rest, CO2 inhalation (2, 3, and 4%) and three levels of exercise were analyzed in supine men using a canopy system for noninvasive measurements. Changes in tidal volume (VT) and breathing frequency (f) with equal increases in minute ventilation (VE) differed significantly during exercise and CO2 inhalation. Increases in VE during exercise was accompanied by increases in VT and f. During CO2 inhalation, the change in frequency was less than during exercise. However, when analyzed in terms of inspiratory flow (VT/TI) and inspiratory duty cycle (TI/Ttot), the response to both stimuli was similar. With increases to twice control VE both TI/Ttot and VT/VI increased. Thereafter only VTTI increased with increasing VE. At rest, inspiratory time on a breath by breath basis increased minimally with VT, while changes in inspiratory flow accounted for the variability in VT. These two respiratory stimulants appear to increase ventilation through different mechanisms when analyzed in terms of VT and f. However, changes in inspiratory flow and duty cycle are similar in both.


1987 ◽  
Vol 63 (6) ◽  
pp. 2286-2292 ◽  
Author(s):  
R. D. Hamilton ◽  
A. J. Winning ◽  
A. Perry ◽  
A. Guz

The effect of local anesthetic aerosol inhalation on the ventilatory response and the sensation of breathlessness to CO2 rebreathing was studied in seven healthy male subjects with permanent tracheal stomas after laryngectomy for carcinoma. Inhalation of bupivacaine aerosol sufficient to abolish the cough reflex to mechanical probing below the carina increased the ventilatory response to CO2 in six of seven subjects compared with saline control. This was achieved by an increase in both respiratory frequency (f) and tidal volume (VT) in four subjects, f in one subject, and VT in one subject. All subjects reported that they were more breathless on rebreathing after bupivacaine aerosol. The six subjects who recorded breathlessness with a visual analog scale (VAS) indicated its onset at a lower minute ventilation (VE) and gave higher VAS scores for equivalent levels of VE after threshold. We conclude that the enhanced CO2 sensitivity and breathlessness on rebreathing after airway anesthesia results from altered lower airway receptor discharge.


PEDIATRICS ◽  
1984 ◽  
Vol 73 (5) ◽  
pp. 652-655
Author(s):  
Jonathan M. Couriel ◽  
Anthony Olinsky

The ventilatory response to acute hypercapnia was studied in 68 parents of victims of sudden infant death syndrome and 56 control subjects. Tidal volume, inspiratory time, and total respiratory cycle time were measured before and immediately after a vital capacity breath of 13% CO2 in oxygen. Instantaneous minute ventilation, mean inspiratory flow (tidal volume/inspiratory time), and respiratory timing (inspiratory time/total respiratory cycle time) were calculated. Both groups of subjects showed a marked increase in tidal volume (48.4% ± 26.5%), instantaneous minute ventilation (56% ± 35%), and tidal volume/inspiratory time (56.8% ± 33.5%) after inhalation of the test gas, with little change in inspiratory time/total respiratory cycle time. There were no significant differences between the two groups for ventilation before or after inhalation of the test gas. The ventilatory response to acute hypercapnia is mediated by the peripheral chemoreceptors. These results suggest that an inherited abnormality of peripheral chemoreceptor function is unlikely to be a factor leading to sudden infant death syndrome.


1985 ◽  
Vol 68 (2) ◽  
pp. 215-225 ◽  
Author(s):  
A. J. Winning ◽  
R. D. Hamilton ◽  
S. A. Shea ◽  
C. Knott ◽  
A. Guz

1. The effect on ventilation of airway anaesthesia, produced by the inhalation of a 5% bupivacaine aerosol (aerodynamic mass median diameter = 4.77 μm), was studied in 12 normal subjects. 2. The dose and distribution of the aerosol were determined from lung scans after the addition to bupivacaine of 99mTc. Bupivacaine labelled in this way was deposited primarily in the central airways. The effectiveness and duration of airway anaesthesia were assessed by the absence of the cough reflex to the inhalation of three breaths of a 5% citric acid aerosol. Airway anaesthesia always lasted more than 20 min. 3. Resting ventilation was measured, by respiratory inductance plethysmography, before and after inhalation of saline and bupivacaine aerosols. The ventilatory response to maximal incremental exercise and, separately, to CO2 inhalation was studied after the inhalation of saline and bupivacaine aerosols. Breathlessness was quantified by using a visual analogue scale (VAS) during a study and by questioning on its completion. 4. At rest, airway anaesthesia had no effect on mean tidal volume (VT), inspiratory time (Ti), expiratory time (Te) or end-tidal Pco2, although the variability of tidal volume was increased. On exercise, slower deeper breathing was produced and breathlessness was reduced. The ventilatory response to CO2 was increased. 5. The results suggest that stretch receptors in the airways modulate the pattern of breathing in normal man when ventilation is stimulated by exercise; their activation may also be involved in the genesis of the associated breathlessness. 6. A hypothesis in terms of a differential airway/alveolar receptor block, is proposed to explain the exaggerated ventilatory response to CO2.


1984 ◽  
Vol 57 (2) ◽  
pp. 475-480 ◽  
Author(s):  
C. Weissman ◽  
J. Askanazi ◽  
J. Milic-Emili ◽  
J. M. Kinney

A mouthpiece plus noseclip (MP & NC) is frequently used in performing measurements of breathing patterns. Although the effects the apparatus exerts on breathing patterns have been studied, the mechanism of the changes it causes remains unclear. The current study examines the effects on respiratory patterns of a standard (17-mm-diam) MP & NC during room air (RA) breathing and the administration of 2 and 4% CO2 in normal volunteers and in patients 2–4 days after abdominal operation. When compared with values obtained with a noninvasive canopy system, the MP & NC induced increases in minute ventilation (VE), tidal volume (VT), and mean inspiratory flow (VT/TI), but not frequency (f) or inspiratory duty cycle, during both RA and CO2 administration. The percentage increase in VE, VT, and VT/TI caused by the MP & NC decreased as the concentration of CO2 increased. During RA breathing, the application of noseclip alone resulted in a decrease in f and an increase in VT, but VE and VT/TI were unchanged. The changes were attenuated during the administration of 2 and 4% CO2. Reducing the diameter of the mouthpiece to 9 mm abolished the alterations in breathing pattern observed with the larger (17-mm) diameter MP.


1994 ◽  
Vol 77 (6) ◽  
pp. 2703-2708 ◽  
Author(s):  
H. Burnet ◽  
M. Bascou-Bussac ◽  
C. Martin ◽  
Y. Jammes

In mechanically ventilated patients the natural gas-conditioning process of the upper airways is bypassed by the use of an endotracheal tube or a tracheostomy. We hypothesized that under these conditions the breathing pattern may greatly influence the convective respiratory heat loss (Cr). Cr values were computed from minute ventilation (VE) and inspiratory and expiratory gas temperatures, which were measured in six patients under mechanical ventilation for the management of cranial trauma. In each patient the effects of 11–20 different breathing patterns were investigated. Relationships between Cr and VE and between combined tidal volume and respiratory frequency were obtained by simple and multiple linear regression methods, respectively. Comparison of the standard errors of estimate indicated that multiple linear regression gives the best fit. Thus, Cr was highly dependent on the breathing pattern and was not related only to VE. For the same VE value, Cr was higher when VE was achieved with high tidal volume and low respiratory frequency. These data are consistent with previous studies in which thermal exchanges through the upper airways were taxed by hyperventilation of frigid air.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paulina M. Getsy ◽  
Sripriya Sundararajan ◽  
Walter J. May ◽  
Graham C. von Schill ◽  
Dylan K. McLaughlin ◽  
...  

AbstractThe roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.


1983 ◽  
Vol 55 (4) ◽  
pp. 1311-1320 ◽  
Author(s):  
G. G. Haddad ◽  
M. R. Gandhi ◽  
G. M. Hochwald ◽  
T. L. Lai

We studied the changes in ventilation induced by intracisternal administration of enkephalins in four unanesthetized adult dogs. Instantaneous minute ventilation (VT/TT) decreased markedly after D-Ala-Met-enkephalinamide (DAME). Mean VT/TT decreased maximally by 20-50 min after DAME and lasted an additional 15-60 min; by 2 h, VT/TT had returned to base line. Four doses (5, 25, 60, and 125 micrograms/kg) of DAME were used, and the ventilatory response depended on the dose. Mean inspiratory time decreased but mean expiratory time and mean TT showed a marked prolongation. Periodic breathing (2-3 breaths separated by long apneic pauses) occurred in every study and the frequency of sighs increased considerably. All these ventilatory changes were reversed by low doses of naloxone or naltrexone; in addition, VT/TT increased well above base line after the administration of these antagonists. However, naloxone did not increase VT/TT when injected without prior administration of DAME. We conclude that 1) the decrease in VT/TT is due to a decrease in respiratory duty cycle; 2) periodic breathing and increased frequency of sighs constitute part of the changes in the ventilatory pattern induced by DAME; 3) a ventilatory withdrawal reaction may occur after a receptor-agonist interaction of short duration; and 4) although enkephalins can modulate ventilation and the breathing pattern in a major way, these data provide no evidence suggesting that this modulation is tonic.


2002 ◽  
Vol 93 (3) ◽  
pp. 903-910 ◽  
Author(s):  
Brett F. BuSha ◽  
Martha H. Stella ◽  
Harold L. Manning ◽  
J. C. Leiter

Imperceptible levels of proportional assist ventilation applied throughout inspiration reduced inspiratory time (Ti) in awake humans. More recently, the reduction in Ti was associated with flow assist, but flow assist also reaches a maximum value early during inspiration. To test the separate effects of flow assist and timing of assist, we applied a pseudorandom binary sequence of flow-assisted breaths during early, late, or throughout inspiration in eight normal subjects. We hypothesized that imperceptible flow assist would shorten Ti most effectively when applied during early inspiration. Tidal volume, integrated respiratory muscle pressure per breath, Ti, and Te were recorded. All stimuli (early, late, or flow assist applied throughout inspiration) resulted in a significant increase in inspiratory flow; however, only when the flow assist was applied during early inspiration was there a significant reduction in Tiand the integrated respiratory muscle pressure per breath. These results provide further evidence that vagal feedback modulates breathing on a breath-by-breath basis in conscious humans within a physiological range of breath sizes.


Sign in / Sign up

Export Citation Format

Share Document