Failure of tracheal distension to inhibit breathing in anesthetized dogs

1980 ◽  
Vol 48 (5) ◽  
pp. 794-798 ◽  
Author(s):  
T. C. Lloyd ◽  
J. A. Cooper

Using anesthetized spontaneously breathing dogs, we compared the respiratory effects of tracheal distension with the effects of changes in lung volume before and after vagotomy. We used an endotracheal tube with a long cuff to distend the trachea to pressures of 10, 20, and 40 cmH2O. Lung volume increases were imposed by expiratory threshold loading, and volume was decreased by abdominal compression, both of which caused outward rib cage displacement. During expiratory loading, the tidal volume was unchanged but respiratory frequency and minute volume fell and an active expiratory effort appeared; whereas frequency and minute volume rose, but tidal volume fell during abdominal compression. Tracheal distension evoked no discernible change in breathing. Following vagotomy, tidal volume and minute volume fell, and frequency rose slightly, during expiratory loading but abdominal compression was without effect. After vagotomy, 40 cmH2O tracheal distension caused a slight frequency increase. We concluded that the potential role of tracheal deformation in the reflex control of breathing is insignificant in comparison with the other airways.

1988 ◽  
Vol 64 (3) ◽  
pp. 1060-1067 ◽  
Author(s):  
G. A. Farkas ◽  
R. E. Baer ◽  
M. Estenne ◽  
A. De Troyer

To examine the mechanical effects of the abdominal and triangularis sterni expiratory recruitment that occurs when anesthetized dogs are tilted head up, we measured both before and after cervical vagotomy the end-expiratory length of the costal and crural diaphragmatic segments and the end-expiratory lung volume (FRC) in eight spontaneously breathing animals during postural changes from supine (0 degree) to 80 degrees head up. Tilting the animals from 0 degree to 80 degrees head up in both conditions was associated with a gradual decrease in end-expiratory costal and crural diaphragmatic length and with a progressive increase in FRC. All these changes, however, were considerably larger (P less than 0.005 or less) postvagotomy when the expiratory muscles were no longer recruited with tilting. Alterations in the elastic properties of the lung could not account for the effects of vagotomy on the postural changes. We conclude therefore that 1) by contracting during expiration, the canine expiratory muscles minimize the shortening of the diaphragm and the increase in FRC that the action of gravity would otherwise introduce, and 2) the end-expiratory diaphragmatic length and FRC in upright dogs are thus actively determined. The present data also indicate that by relaxing at end expiration, the expiratory muscles make a substantial contribution to tidal volume in upright dogs; in the 80 degrees head-up posture, this contribution would amount to approximately 60% of tidal volume.


1984 ◽  
Vol 57 (4) ◽  
pp. 1254-1260 ◽  
Author(s):  
M. Decramer ◽  
A. De Troyer

In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
pp. 025576142110273
Author(s):  
Erkan Sülün ◽  
Hüseyin Olgaçer ◽  
Hakkı Cengiz Eren

In this study, the authors evaluated the potential role of an activity-based guitar training program on reducing anxiety and providing fulfillment for younger relatives of cancer patients. Ten active members of KHYD (The Society for Relatives of Cancer Patients), between ages 11 and 17 participated in an 8-week guitar education program. The participants filled out two questionnaires before and after their engagement in the 8-week program, one to measure changes in their anxiety levels (State-Trait Anxiety Inventory) and the other to measure changes in their general fulfillment levels (Multidimensional Students’ Life Satisfaction Scale). Wilcoxon signed rank test, as well as descriptive statistics were used in the analysis of data. Mean rank differences were observed to be statistically significant with respect to total state and trait anxiety scores; in both cases, the participants’ scores decreased after their engagement in the program. Statistically significant mean rank differences were also observed in the overall MSLSS scores and its “friends” and “environment” sub-dimensions; with respect to these, participants’ scores increased after their engagement in the program. Recommendations for more comprehensive, larger-scale studies are given at the end.


1984 ◽  
Vol 56 (6) ◽  
pp. 1583-1588 ◽  
Author(s):  
A. Oliven ◽  
E. C. Deal ◽  
S. G. Kelsen ◽  
N. S. Cherniack

The ability to maintain alveolar ventilation is compromised by respiratory muscle weakness. To examine the independent role of reflexly mediated neural mechanisms to decreases in the strength of contraction of respiratory muscles, we studied the effects of partial paralysis on the level and pattern of phrenic motor activity in 22 anesthetized spontaneously breathing dogs. Graded weakness induced with succinylcholine decreased tidal volume and prolonged both inspiratory and expiratory time causing hypoventilation and hypercapnia. Phrenic peak activity as well as the rate of rise of the integrated phrenic neurogram increased. However, when studied under isocapnic conditions, increases in the severity of paralysis, as assessed from the ratio of peak diaphragm electromyogram to peak phrenic activity, produced progressive increases in inspiratory time and phrenic peak activity but did not affect its rate of rise. After vagotomy, partial paralysis induced in 11 dogs with succinylcholine also prolonged the inspiratory burst of phrenic activity, indicating that vagal reflexes were not solely responsible for the alterations in respiratory timing. Muscle paresis was also induced with gallamine or dantrolene, causing similar responses of phrenic activity and respiratory timing. Thus, at constant levels of arterial CO2 in anesthetized dogs, respiratory muscle partial paralysis results in a decrease in breathing rate without changing the rate of rise of respiratory motor activity. This is not dependent solely on vagally mediated reflexes and occurs regardless of the pharmacological agent used. These observations in the anesthetized state are qualitatively different from the response to respiratory muscle paralysis or weakness observed in awake subjects.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 67 (4) ◽  
pp. 1438-1442 ◽  
Author(s):  
G. A. Farkas ◽  
M. Estenne ◽  
A. De Troyer

A change from the supine to the head-up posture in anesthetized dogs elicits increased phasic expiratory activation of the rib cage and abdominal expiratory muscles. However, when this postural change is produced over a 4- to 5-s period, there is an initial apnea during which all the muscles are silent. In the present studies, we have taken advantage of this initial silence to determine functional residual capacity (FRC) and measure the subsequent change in end-expiratory lung volume. Eight animals were studied, and in all of them end-expiratory lung volume in the head-up posture decreased relative to FRC [329 +/- 70 (SE) ml]. Because this decrease also represents the increase in lung volume as a result of expiratory muscle relaxation at the end of the expiratory pause, it can be used to determine the expiratory muscle contribution to tidal volume (VT). The average contribution was 62 +/- 6% VT. After denervation of the rib cage expiratory muscles, the reduction in end-expiratory lung volume still amounted to 273 +/- 84 ml (49 +/- 10% VT). Thus, in head-up dogs, about two-thirds of VT result from the action of the expiratory muscles, and most of it (83%) is due to the action of the abdominal rather than the rib cage expiratory muscles.


1983 ◽  
Vol 245 (3) ◽  
pp. H437-H446 ◽  
Author(s):  
R. A. Nyhof ◽  
C. C. Chou

The role of local intestinal nerves in the nutrient-induced intestinal hyperemia was investigated in jejunal segments of anesthetized dogs by comparing the hyperemic effect of intraluminal glucose and oleic acid solutions before and after mucosal anesthesia and infusions of methysergide, hexamethonium, and tetrodotoxin. Methysergide, hexamethonium, and tetrodotoxin all failed to alter either the vascular or metabolic responses to luminal placement of glucose or oleic acid. The increases in blood flow and oxygen uptake produced by glucose or oleic acid, however, were blocked or attenuated after exposing the mucosa to dibucaine. The effect was norepinephrine due to an altered vascular response to vasoactive substances as dibucaine did not alter vascular responses to isoproterenol or norepinephrine. Dibucaine, however, inhibited active transport and increased passive transport of glucose across rat intestinal sacs in vitro. Oxygen consumption of the canine jejunal mucosa was also inhibited by dibucaine in vitro. It seems that inhibition of the nutrient-induced intestinal hyperemia by dibucaine is due, at least in part, to its effect on oxygen consumption and glucose transport of the mucosal epithelial cells. Nutrient-induced hyperemia appears not to be neurally mediated but more closely related to metabolism.


2021 ◽  
Vol 22 (24) ◽  
pp. 13609
Author(s):  
Lucas Wauters ◽  
Raúl Y. Tito ◽  
Matthias Ceulemans ◽  
Maarten Lambaerts ◽  
Alison Accarie ◽  
...  

Proton pump inhibitors (PPI) may improve symptoms in functional dyspepsia (FD) through duodenal eosinophil-reducing effects. However, the contribution of the microbiome to FD symptoms and its interaction with PPI remains elusive. Aseptic duodenal brushings and biopsies were performed before and after PPI intake (4 weeks Pantoprazole 40 mg daily, FD-starters and controls) or withdrawal (2 months, FD-stoppers) for 16S-rRNA sequencing. Between- and within-group changes in genera or diversity and associations with symptoms or duodenal factors were analyzed. In total, 30 controls, 28 FD-starters and 19 FD-stoppers were followed. Mucus-associated Porphyromonas was lower in FD-starters vs. controls and correlated with symptoms in FD and duodenal eosinophils in both groups, while Streptococcus correlated with eosinophils in controls. Although clinical and eosinophil-reducing effects of PPI therapy were unrelated to microbiota changes in FD-starters, increased Streptococcus was associated with duodenal PPI effects in controls and remained higher despite withdrawal of long-term PPI therapy in FD-stoppers. Thus, duodenal microbiome analysis demonstrated differential mucus-associated genera, with a potential role of Porphyromonas in FD pathophysiology. While beneficial effects of short-term PPI therapy were not associated with microbial changes in FD-starters, increased Streptococcus and its association with PPIeffects in controls suggest a role for duodenal dysbiosis after long-term PPI therapy.


1989 ◽  
Vol 66 (3) ◽  
pp. 1297-1303 ◽  
Author(s):  
S. Iscoe

The role of phrenic afferents in controlling inspiratory duration (TI) at elevated end-expiratory lung volume (EEV) has been studied in pentobarbital-anesthetized, spontaneously breathing cats with intact vagi. Responses to increases in EEV, induced by imposition of an expiratory threshold load (ETL) of 10 cmH2O, were monitored before and after section of cervical dorsal roots C3-C7. The immediate (first-breath) effect of application of ETL was a prolongation of both TI and expiratory duration (TE). After 10 min of breathing against the ETL, average TI returned to control values but TE remained prolonged. Abolishing feedback from the diaphragm did not affect these responses. When steady-state responses to ETL were compared with those elicited by inhalation of 5–6% CO2 in O2, changes in EEV had, on average, no independent effect on respiratory drive (rate of rise of integrated phrenic activity), although phrenic activity increased greatly in some cats despite little or no change in arterial partial pressure of CO2. These data indicate that diaphragmatic receptors do not contribute to either the immediate (first-breath) or steady-state responses of phrenic motoneurons to increases in EEV in intact cats.


1999 ◽  
Vol 87 (4) ◽  
pp. 1491-1495 ◽  
Author(s):  
Joseph R. Rodarte ◽  
Gassan Noredin ◽  
Charles Miller ◽  
Vito Brusasco ◽  
Riccardo Pellegrino ◽  
...  

During dynamic hyperinflation with induced bronchoconstriction, there is a reduction in lung elastic recoil at constant lung volume (R. Pellegrino, O. Wilson, G. Jenouri, and J. R. Rodarte. J. Appl. Physiol. 81: 964–975, 1996). In the present study, lung elastic recoil at control end inspiration was measured in normal subjects in a volume displacement plethysmograph before and after voluntary increases in mean lung volume, which were achieved by one tidal volume increase in functional residual capacity (FRC) with constant tidal volume and by doubling tidal volume with constant FRC. Lung elastic recoil at control end inspiration was significantly decreased by ∼10% within four breaths of increasing FRC. When tidal volume was doubled, the decrease in computed lung recoil at control end inspiration was not significant. Because voluntary increases of lung volume should not produce airway closure, we conclude that stress relaxation was responsible for the decrease in lung recoil.


2015 ◽  
Vol 1104 ◽  
pp. 163-167 ◽  
Author(s):  
Salha Boulila ◽  
Hassane Oudadesse ◽  
Bertrand Lefeuvre ◽  
Khansa Chaabouni ◽  
Fatima Makni-Ayedi ◽  
...  

The biomaterials are used for many biomedical applications. The main objective of the present work was to investigate the potential role of Bioglass (Melting)- Polyvinyl alcohol (BG (M)-PVA) and Bioglass (Melting)-Polyvinyl alcohol-20%Ciprofloxacin (BG (M)-PVA-20Cip) in regenerative bone capacity. These composites were implanted in the femoral condyles of Wistar rats and compared to that of ovariectomised groups. Our results noted, after the different period of implantation (15, 30, 60 and 90 days), that the Alkaline phosphatase (ALP) and Acid phosphatase (ACP) activities showed an excellent osteoinductive property of BG (M)-PVA, that this phenomena decreased with the presence of ciprofloxacin. Physico-chemical techniques (ICP-OES and SEM) were engaged to highlight the influence of antibiotic on the structure, porosity and bioactivity of a porous Glass-PVA before and after implantation. The results obtained by ICP-OES showed a rapid reduction in silicon (Si) and sodium (Na), and noted an accelerator increase in calcium (Ca) and phosphorus (P) ion concentrations in BG (M)-PVA that the BG (M)-PVA-20Cip. This result is confirmed by SEM. We can conclude that the loading of ciprofloxacin in BG (M)-PVA is characterized by a retard effect of formation of apatitic phase.


Sign in / Sign up

Export Citation Format

Share Document