Influence of progesterone on arterial blood and CSF acid-base balance in women

1981 ◽  
Vol 51 (6) ◽  
pp. 1433-1436 ◽  
Author(s):  
H. Machida

To study the mechanism of the action of progesterone on pulmonary ventilation during pregnancy, arterial and cerebrospinal fluid (CSF) acid-base parameters were measured in 59 pregnant and 36 nonpregnant women at the periods of follicular phase, luteal phase, early pregnancy, late pregnancy, and puerperium. Marked respiratory alkalosis in both arterial blood and CSF was observed in pregnancy and puerperium. The degree of hypocapnia observed in the luteal phase and during pregnancy was closely related to the progesterone level in arterial blood. In conclusion, it is unlikely that the observed hyperventilation results from stimulation at the central chemosensitive areas or peripheral chemoreceptors.

Author(s):  
Michael M. Tymko ◽  
Christopher K. Willie ◽  
Connor A. Howe ◽  
Ryan L. Hoiland ◽  
Rachel Stone ◽  
...  

High-altitude exposure results in a hyperventilatory-induced respiratory alkalosis followed by renal compensation (bicarbonaturia) to return arterial blood pH(a) toward sea-level values. However, acid-base balance has not been comprehensively examined in both lowlanders and indigenous populations - where the latter are thought to be fully adapted to high-altitude. The purpose of this investigation was to compare acid-base balance between acclimatizing lowlanders, and Andean and Sherpa highlanders at various altitudes (~3,800, ~4,300, and ~5,000 m). We compiled data collected across five independent high-altitude expeditions and report the following novel findings: 1) at 3,800 m, Andeans (n=7) had elevated pHa compared to Sherpas (n=12; P<0.01), but not to lowlanders (n=16; nine days acclimatized; P=0.09); 2) at 4,300 m, lowlanders (n=16; 21 days acclimatized) had elevated pHa compared to Andeans (n=32) and Sherpas (n=11; both P<0.01), and Andeans had elevated pHa compared to Sherpas (P=0.01); and 3) at 5,000 m, lowlanders (n=16; 14 days acclimatized) had higher pHa compared to both Andeans (n=66) and Sherpas (n=18; P<0.01, and P=0.03, respectively), and Andean and Sherpa highlanders had similar blood pHa (P=0.65). These novel data characterize acid-base balance acclimatization and adaptation to various altitudes in lowlanders and indigenous highlanders.


1982 ◽  
Vol 52 (1) ◽  
pp. 114-118 ◽  
Author(s):  
D. G. Davies ◽  
J. L. Thomas ◽  
E. N. Smith

Pulmonary ventilation and arterial blood acid-base balance were measured in six unanesthetized alligators, Alligator mississipiensis, at 15, 25, and 35 degree C. The animals exhibited pronounced ventilatory responses to hypercapnia at all temperatures studied. Arterial PCO2 increased and pH decreased with increases in body temperature during both normocapnia and hypercapnia. The fractional dissociation of imidazole (alpha Pr) remained constant with changes in body temperature during normocapnia, but increased with temperature during hypercapnia. Ventilatory sensitivity, defined as delta (VE/VO2/delta (alpha Pr), was independent of body temperature. We conclude that the control of breathing in the alligator is a physiological defense of alpha Pr and that ventilatory responses occur following nontemperature-induced changes in blood acid-base balance, which tend to return alpha Pr to a normal value.


2018 ◽  
Vol 08 (02) ◽  
pp. 051-056 ◽  
Author(s):  
Matjaž Kopač

AbstractAlkalosis is a disorder of acid–base balance defined by elevated pH of the arterial blood. Metabolic alkalosis is characterized by primary elevation of the serum bicarbonate. Due to several mechanisms, it is often associated with hypochloremia and hypokalemia and can only persist in the presence of factors causing and maintaining alkalosis. Respiratory alkalosis is a consequence of dysfunction of respiratory system's control center. There are no pathognomonic symptoms. History is important in the evaluation of alkalosis and usually reveals the cause. It is important to evaluate volemia during physical examination. Treatment must be causal and prognosis depends on a cause.


2017 ◽  
Vol 45 (1) ◽  
pp. 8
Author(s):  
Martielo Ivan Gehrcke ◽  
Doughlas Regalin ◽  
Vanessa Sasso Padilha ◽  
Felipe Comassetto ◽  
Gizelli Da Silva ◽  
...  

Background: Hemogasometric analysis is used in the interpretation of acid-base balance (ABB) and to access pulmonary ventilation. Already mixed venous oxygen saturation obtained at pulmonary artery correlates with tissue oxygenation. However, both samples can be difficult to access because of the difficulties in arterial and pulmonary catheterization. The aim of this study was to evaluate the feasibility of replacing the arterial and mixed venous bloods, the end tidal pressure of carbon dioxide (EtCO2) and central venous blood in the analysis of pulmonary ventilation, tissue oxygenation and ABB in dogs under different hemodynamic states.Material, Methods & Results: Nine dogs were used with an average weight of 19.6 ± 1.3 kg, anesthetized with isoflurane at 1.4 V% diluted on oxygen 60% (Baseline), and subsequently undergoing mechanical ventilation (MV) and the hypodinamic state (Hypo) with isoflurane at 3.5V% and mean arterial pressure (MAP) lower than 50 mmHg and hyperdynamic state (Hyper) by dobutamine infusion at 5 μg/kg/min and with MAP 30% higher than baseline. For each time allowed a 15 min of stabilization by each hemodynamic status. Simultaneously were collected samples of 0.6 mL of arterial blood by metatarsal artery, mixed and central venous blood by pulmonary artery and right atrium for hemogasometric analysis. To access lung function we correlated and compared the EtCO2 values obtained by gas analyzer with expired carbon dioxide pressure in the arterial blood (PaCO2), mixed venous blood (PmvCO2) and central venous blood (PcvCO2). For the interpretation of tissue oxygenation we correlated and compared the values of mixed (SmvO2) and central (ScvO2) venous oxygen saturation. For the acid-base balance we used the correlation of potencial hydrogen (pH); carbon dioxide pressure (PCO2); bicarbonate ion (HCO3-); base excess (BE); anion GAP (AG); sodium ions (Na+), chlorine ions (Cl-), potassium ions (K+) and ionized calcium (iCa) of arterial (a) mixed venous (mv) and central venous (CV) bloods. Statistical analysis was performed using ANOVA-RM followed by Dunnet test for differences between times and Tukey’s test for differences among the samples (P ≤ 0.05). Pearson correlation analysis was performed using linear regression and for comparison methods we used the Bland-Altman analysis The EtCO2 values correlated (r = 0.87) and were according to Bland-Altman analysis with PaCO2 values (mean difference of -1.6 ± 2,9 mmHg for PaCO2. There were no differences (P ≤ 0.05) from SmvO2 and ScvO2. ScvO2 correlated (r = 0.91) with SmvO2 at different hemodynamic states and with a mean difference of -0.4 ± 2.5%. Both venous bloods were correlated with the analysis of arterial blood acid-base balance and electrolytes in different hemodynamic states. However, the ionized calcium levels were 40% lower in arterial blood.Discussion: EtCO2 measurement depends of monitor technology and proper pulmonar ventilation and perfusion. In this study the limiting factor in replacing the PaCO2 hair EtCO2 was spontaneous ventilation because in this state pulmonary ventilation is compromissed. With the use of MV was possible get up similar results in the pulmonar function analysis using the EtCO2 and PaCO2. The use of central venous blood instead mixed venous blood at oxygen saturation analysis provided adequate estimate this parameter. This being easier and less invasive technique. ABB was possible with all samples with own reference values for venous and arterial samples. This is an interesting result for critical patients where the arterial sample is difficult. In electrolytes the sample was indifferent except for calcium because pH interfere in this values. It was conclude that the values of EtCO2 and central venous blood are correlated and can replace arterial and mixed venous bloods in the analysis of lung function, tissue oxygenation and acid base balance.


PEDIATRICS ◽  
1970 ◽  
Vol 46 (5) ◽  
pp. 730-736
Author(s):  
Katherine H. Halloran ◽  
Steven C. Schimpff ◽  
Jean G. Nicolas ◽  
Norman S. Talner

Tolerance to acetyl strophanthidin, a rapid-acting cardiac aglycone, was determined in 28 anesthetized mongrel puppies, ages 16 to 56 days, and compared to tolerance in 16 littermate puppies in whom acute hypercapnic acidemia was produced. The tolerance was also compared to that of four adult mongrel dogs. The toxic dose was defined as the intravenous amount required to produce four consecutive premature ventricular contractions. A marked variation in the toxic dose was found in the 28 control puppies (range 83 to 353 µg/kg, mean 169 µg/kg) which could not be correlated with age, arterial blood gases or pH, serum potassium or sodium, arterial pressure, or heart rate. The toxic dose was significantly greater in the puppies than in the adult dogs, in whom the mean toxic dose was 64 µg/kg (range 50 to 89 µg/kg). A significant increase in tolerance was also observed in the puppies with hypercapnic acidemia (mean toxic dose 220 µg/kg, range 93 to 375 µg/kg) in comparison to tolerance in the control puppies and despite the wide range of tolerance, each of the puppies with hypercapnic acidemia showed greater tolerance than its littermate control puppy. Assessment of the clinical implications of these findings will require study of the effects of alterations in acid-base balance on the inotropic effect of acetyl strophanthidin in addition to the toxic electrophysiologic effects.


1981 ◽  
Vol 51 (2) ◽  
pp. 452-460 ◽  
Author(s):  
P. E. Bickler

The effects of constant and changing temperatures on blood acid-base status and pulmonary ventilation were studied in the eurythermal lizard Dipsosaurus dorsalis. Constant temperatures between 18 and 42 degrees C maintained for 24 h or more produced arterial pH changes of -0.0145 U X degrees C-1. Arterial CO2 tension (PCO2) increased from 9.9 to 32 Torr plasma [HCO-3] and total CO2 contents remained constant at near 19 and 22 mM, respectively. Under constant temperature conditions, ventilation-gas exchange ratios (VE/MCO2 and VE/MO2) were inversely related to temperature and can adequately explain the changes in arterial PCO2 and pH. During warming and cooling between 25 and 42 degrees C arterial pH, PCO2 [HCO-3], and respiratory exchange ratios (MCO2/MO2) were similar to steady-state values. Warming and cooling each took about 2 h. During the temperature changes, rapid changes in lung ventilation following steady-state patterns were seen. Blood relative alkalinity changed slightly with steady-state or changing body temperatures, whereas calculated charge on protein histidine imidazole was closely conserved. Cooling to 17-18 degrees C resulted in a transient respiratory acidosis correlated with a decline in the ratio VE/MCO2. After 12-24 h at 17-18 degrees C, pH, PCO2, and VE returned to steady-state values. The importance of thermal history of patterns of acid-base regulation in reptiles is discussed.


Author(s):  
Donaliazarti Donaliazarti ◽  
Rismawati Yaswir ◽  
Hanifah Maani ◽  
Efrida Efrida

Metabolic acidosis is prevalent among critically ill patients and the common cause of metabolic acidosis in ICU is lactic acidosis. However, not all ICUs can provide lactate measurement. The traditional method that uses Henderson-Hasselbach equation (completed with BE and AG) and alternative method consisting of Stewart and its modification (BDEgap and SIG), are acid-base balance parameters commonly used by clinicians to determine metabolic acidosis in critically ill patients. The objective of this study was to discover the association between acid-base parameters (BE, AGobserved, AGcalculated, SIG, BDEgap) with lactate level in critically ill patients with metabolic acidosis. This was an analytical study with a cross-sectional design. Eighty-four critically ill patients hospitalized in the ICU department Dr. M. Djamil Padang Hospital were recruited in this study from January to September 2016. Blood gas analysis and lactate measurement were performed by potentiometric and amperometric method while electrolytes and albumin measurement were done by ISE and colorimetric method (BCG). Linear regression analysis was used to evaluate the association between acid-base parameters with lactate level based on p-value less than 0.05. Fourty five (54%) were females and thirty-nine (46%) were males with participant’s ages ranged from 18 to 81 years old. Postoperative was the most reason for ICU admission (88%). Linear regression analysis showed that p-value for BE, AGobserved, AGcalculated, SIG and BDEgap were 119; 0.967; 0.001; 0.001; 0.689, respectively. Acid-base balance parameters which were mostly associated with lactate level in critically ill patients with metabolic acidosis were AGcalculated and SIG. 


1980 ◽  
Vol 84 (1) ◽  
pp. 289-302
Author(s):  
R. G. Boutilier ◽  
D. G. McDonald ◽  
D. P. Toews

A combined respiratory and metabolic acidosis occurs in the arterial blood immediately following 30 min of strenuous activity in the predominantly skin-breathing urodele, Cryptobranchus alleganiensis, and in the bimodal-breathing anuran, Bufo marinus, at 25 degrees C. In Bufo, the bulk of the post-exercise acidosis is metabolic in origin (principally lactic acid) and recovery is complete within 4-8 h. In the salamander, a lower magnitude, longer duration, metabolic acid component and a more pronounced respiratory acidosis prolong the recovery period for up to 22 h post-exercise. It is suggested that fundamental differences between the dominant sites for gas exchange (pulmonary versus cutaneous), and thus in the control of respiratory acid-base balance, may underline the dissimilar patterns of recovery from exercise in these two species.


1980 ◽  
Vol 84 (1) ◽  
pp. 273-287
Author(s):  
D. G. McDonald ◽  
R. G. Boutilier ◽  
D. P. Toews

Strenuous exercise results in a marked blood acid-base disturbance which is accompanied by large increases in ventilation rate, heart rate and mean arterial blood pressure. Recovery to normal resting values follows an exponential time course with a half-time of approximately 2 h for all parameters except Pa, CO2 and ventilation rate. The latter return to normal by 30 min following the exercise period. Analysis reveals that there is initially a large discrepancy between the quantity of metabolic acids buffered in the blood and the blood lactate levels. The significance of this finding is discussed. Significant changes in the concentrations of chloride, bicarbonate and lactate, in both plasma and erythrocytes, accompany the blood acid-base disturbance. Chloride and bicarbonate appear to be passively distributed between the two compartments according to a Gibbs-Donnan equilibrium whereas lactate only slowly permeates the erythrocyte.


Sign in / Sign up

Export Citation Format

Share Document