scholarly journals Evaluation and Treatment of Alkalosis in Children

2018 ◽  
Vol 08 (02) ◽  
pp. 051-056 ◽  
Author(s):  
Matjaž Kopač

AbstractAlkalosis is a disorder of acid–base balance defined by elevated pH of the arterial blood. Metabolic alkalosis is characterized by primary elevation of the serum bicarbonate. Due to several mechanisms, it is often associated with hypochloremia and hypokalemia and can only persist in the presence of factors causing and maintaining alkalosis. Respiratory alkalosis is a consequence of dysfunction of respiratory system's control center. There are no pathognomonic symptoms. History is important in the evaluation of alkalosis and usually reveals the cause. It is important to evaluate volemia during physical examination. Treatment must be causal and prognosis depends on a cause.

Author(s):  
Michael M. Tymko ◽  
Christopher K. Willie ◽  
Connor A. Howe ◽  
Ryan L. Hoiland ◽  
Rachel Stone ◽  
...  

High-altitude exposure results in a hyperventilatory-induced respiratory alkalosis followed by renal compensation (bicarbonaturia) to return arterial blood pH(a) toward sea-level values. However, acid-base balance has not been comprehensively examined in both lowlanders and indigenous populations - where the latter are thought to be fully adapted to high-altitude. The purpose of this investigation was to compare acid-base balance between acclimatizing lowlanders, and Andean and Sherpa highlanders at various altitudes (~3,800, ~4,300, and ~5,000 m). We compiled data collected across five independent high-altitude expeditions and report the following novel findings: 1) at 3,800 m, Andeans (n=7) had elevated pHa compared to Sherpas (n=12; P<0.01), but not to lowlanders (n=16; nine days acclimatized; P=0.09); 2) at 4,300 m, lowlanders (n=16; 21 days acclimatized) had elevated pHa compared to Andeans (n=32) and Sherpas (n=11; both P<0.01), and Andeans had elevated pHa compared to Sherpas (P=0.01); and 3) at 5,000 m, lowlanders (n=16; 14 days acclimatized) had higher pHa compared to both Andeans (n=66) and Sherpas (n=18; P<0.01, and P=0.03, respectively), and Andean and Sherpa highlanders had similar blood pHa (P=0.65). These novel data characterize acid-base balance acclimatization and adaptation to various altitudes in lowlanders and indigenous highlanders.


1981 ◽  
Vol 51 (6) ◽  
pp. 1433-1436 ◽  
Author(s):  
H. Machida

To study the mechanism of the action of progesterone on pulmonary ventilation during pregnancy, arterial and cerebrospinal fluid (CSF) acid-base parameters were measured in 59 pregnant and 36 nonpregnant women at the periods of follicular phase, luteal phase, early pregnancy, late pregnancy, and puerperium. Marked respiratory alkalosis in both arterial blood and CSF was observed in pregnancy and puerperium. The degree of hypocapnia observed in the luteal phase and during pregnancy was closely related to the progesterone level in arterial blood. In conclusion, it is unlikely that the observed hyperventilation results from stimulation at the central chemosensitive areas or peripheral chemoreceptors.


PEDIATRICS ◽  
1970 ◽  
Vol 46 (5) ◽  
pp. 730-736
Author(s):  
Katherine H. Halloran ◽  
Steven C. Schimpff ◽  
Jean G. Nicolas ◽  
Norman S. Talner

Tolerance to acetyl strophanthidin, a rapid-acting cardiac aglycone, was determined in 28 anesthetized mongrel puppies, ages 16 to 56 days, and compared to tolerance in 16 littermate puppies in whom acute hypercapnic acidemia was produced. The tolerance was also compared to that of four adult mongrel dogs. The toxic dose was defined as the intravenous amount required to produce four consecutive premature ventricular contractions. A marked variation in the toxic dose was found in the 28 control puppies (range 83 to 353 µg/kg, mean 169 µg/kg) which could not be correlated with age, arterial blood gases or pH, serum potassium or sodium, arterial pressure, or heart rate. The toxic dose was significantly greater in the puppies than in the adult dogs, in whom the mean toxic dose was 64 µg/kg (range 50 to 89 µg/kg). A significant increase in tolerance was also observed in the puppies with hypercapnic acidemia (mean toxic dose 220 µg/kg, range 93 to 375 µg/kg) in comparison to tolerance in the control puppies and despite the wide range of tolerance, each of the puppies with hypercapnic acidemia showed greater tolerance than its littermate control puppy. Assessment of the clinical implications of these findings will require study of the effects of alterations in acid-base balance on the inotropic effect of acetyl strophanthidin in addition to the toxic electrophysiologic effects.


1980 ◽  
Vol 84 (1) ◽  
pp. 289-302
Author(s):  
R. G. Boutilier ◽  
D. G. McDonald ◽  
D. P. Toews

A combined respiratory and metabolic acidosis occurs in the arterial blood immediately following 30 min of strenuous activity in the predominantly skin-breathing urodele, Cryptobranchus alleganiensis, and in the bimodal-breathing anuran, Bufo marinus, at 25 degrees C. In Bufo, the bulk of the post-exercise acidosis is metabolic in origin (principally lactic acid) and recovery is complete within 4-8 h. In the salamander, a lower magnitude, longer duration, metabolic acid component and a more pronounced respiratory acidosis prolong the recovery period for up to 22 h post-exercise. It is suggested that fundamental differences between the dominant sites for gas exchange (pulmonary versus cutaneous), and thus in the control of respiratory acid-base balance, may underline the dissimilar patterns of recovery from exercise in these two species.


1980 ◽  
Vol 84 (1) ◽  
pp. 273-287
Author(s):  
D. G. McDonald ◽  
R. G. Boutilier ◽  
D. P. Toews

Strenuous exercise results in a marked blood acid-base disturbance which is accompanied by large increases in ventilation rate, heart rate and mean arterial blood pressure. Recovery to normal resting values follows an exponential time course with a half-time of approximately 2 h for all parameters except Pa, CO2 and ventilation rate. The latter return to normal by 30 min following the exercise period. Analysis reveals that there is initially a large discrepancy between the quantity of metabolic acids buffered in the blood and the blood lactate levels. The significance of this finding is discussed. Significant changes in the concentrations of chloride, bicarbonate and lactate, in both plasma and erythrocytes, accompany the blood acid-base disturbance. Chloride and bicarbonate appear to be passively distributed between the two compartments according to a Gibbs-Donnan equilibrium whereas lactate only slowly permeates the erythrocyte.


1964 ◽  
Vol 206 (4) ◽  
pp. 875-882 ◽  
Author(s):  
David P. Simpson

Citrate excretion has been studied in dogs under various conditions of acid-base balance in order to determine which factors are responsible for the increased citrate clearance present in metabolic alkalosis. A close relationship, significantly modified by systemic pH, was found between plasma bicarbonate concentration and citrate clearance. In the presence of an alkaline plasma pH, there was a linear relationship between changes in plasma bicarbonate concentration and changes in citrate clearance. Other experiments also demonstrated the influence of plasma bicarbonate concentration on citrate clearance at alkaline pH. Under acidotic conditions citrate clearances were low and changes in plasma bicarbonate concentration had little effect on citrate excretion. A change in plasma pH from an acidotic to an alkalotic state, with a constant plasma bicarbonate concentration, produced an increase in citrate clearance. Thus the coexistence in metabolic alkalosis of high plasma bicarbonate concentration and high plasma pH results in a markedly increased citrate clearance.


1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


2017 ◽  
Vol 57 (12) ◽  
pp. 2415
Author(s):  
J. J. Cottrell ◽  
F. Liu ◽  
S. Wan ◽  
U. A. Wijesiriwardana ◽  
K. DiGiacomo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document