Selective activation of quadriceps muscle fibers according to bicycling rate

1984 ◽  
Vol 57 (2) ◽  
pp. 371-379 ◽  
Author(s):  
G. Citterio ◽  
E. Agostoni

Moving average electromyography (MA) of quadriceps muscle bellies has been recorded during bicycling at different rates (30–70 cycles/min) or forces (1–3 kg). For power increments (50–100%) achieved by increasing force at constant rate, MA during pedal downstroke always increased. For similar power increments achieved by increasing the rate at constant force, MA did not increase (37% of cases), increased less (37%), or increased similarly (26%). Investigations by others on the rat suggest that the lack of increase of MA despite power increment was not compensated by other muscle activity; hence it indicates a shift from slow to fast fibers, which provide greater power per unit stimulus. Smaller increase of MA with increasing rate rather than force at isopower could depend on this shift or on muscle properties, if operating on ascending limb of power-velocity curve. This, however, does not seem the case for slow fibers, which should develop peak power at about 25 cycles/min. Hence, fibers of quadriceps muscle of humans seem selectively activated according to movement speed, as previously found in inspiratory muscles of rabbits.

1998 ◽  
Vol 79 (3) ◽  
pp. 1409-1424 ◽  
Author(s):  
Paul L. Gribble ◽  
David J. Ostry ◽  
Vittorio Sanguineti ◽  
Rafael Laboissière

Gribble, Paul L., David J. Ostry, Vittorio Sanguineti, and Rafael Laboissière. Are complex control signals required for human arm movement? J. Neurophysiol. 79: 1409–1424, 1998. It has been proposed that the control signals underlying voluntary human arm movement have a “complex” nonmonotonic time-varying form, and a number of empirical findings have been offered in support of this idea. In this paper, we address three such findings using a model of two-joint arm motion based on the λ version of the equilibrium-point hypothesis. The model includes six one- and two-joint muscles, reflexes, modeled control signals, muscle properties, and limb dynamics. First, we address the claim that “complex” equilibrium trajectories are required to account for nonmonotonic joint impedance patterns observed during multijoint movement. Using constant-rate shifts in the neurally specified equilibrium of the limb and constant cocontraction commands, we obtain patterns of predicted joint stiffness during simulated multijoint movements that match the nonmonotonic patterns reported empirically. We then use the algorithm proposed by Gomi and Kawato to compute a hypothetical equilibrium trajectory from simulated stiffness, viscosity, and limb kinematics. Like that reported by Gomi and Kawato, the resulting trajectory was nonmonotonic, first leading then lagging the position of the limb. Second, we address the claim that high levels of stiffness are required to generate rapid single-joint movements when simple equilibrium shifts are used. We compare empirical measurements of stiffness during rapid single-joint movements with the predicted stiffness of movements generated using constant-rate equilibrium shifts and constant cocontraction commands. Single-joint movements are simulated at a number of speeds, and the procedure used by Bennett to estimate stiffness is followed. We show that when the magnitude of the cocontraction command is scaled in proportion to movement speed, simulated joint stiffness varies with movement speed in a manner comparable with that reported by Bennett. Third, we address the related claim that nonmonotonic equilibrium shifts are required to generate rapid single-joint movements. Using constant-rate equilibrium shifts and constant cocontraction commands, rapid single-joint movements are simulated in the presence of external torques. We use the procedure reported by Latash and Gottlieb to compute hypothetical equilibrium trajectories from simulated torque and angle measurements during movement. As in Latash and Gottlieb, a nonmonotonic function is obtained even though the control signals used in the simulations are constant-rate changes in the equilibrium position of the limb. Differences between the “simple” equilibrium trajectory proposed in the present paper and those that are derived from the procedures used by Gomi and Kawato and Latash and Gottlieb arise from their use of simplified models of force generation.


1988 ◽  
Vol 64 (1) ◽  
pp. 90-101 ◽  
Author(s):  
E. D'Angelo ◽  
N. Garzaniti ◽  
F. Bellemare

Moving-average electromyogram (EMG) of the diaphragm (DI), scalenes, and cranial and caudal parasternals was assessed in anesthetized, supine, and head-up dogs during rebreathing. The shape of EMG trajectory was similar for all muscles and conditions; activation of different muscles could be thus compared on the basis of changes in peak activity. In intact dogs changes in peak activity were greater for the scalenes and cranial parasternals than for the caudal parasternals and greater for the inspiratory thoracic muscles (ITM) than for the DI. Posture, vagotomy, and cordotomy at C7-T1 did not affect the rate of rise of DI activity. The relations between peak activity of ITM did not change because of posture, vagotomy, and phrenicotomy. Vagotomy selectively depressed the rate of rise of ITM activity, but relative changes in peak ITM activity for a given change in peak DI activity were independent of intact vagi. Differences in the pattern of activation between inspiratory muscles with rebreathing are largely independent of proprioceptive inputs and likely reflect properties of central control mechanisms. However, airway occlusion at end expiration caused a reflex fall of DI activity and reflex increase of ITM activity in intact and vagotomized dogs. Cordotomy at C7-T1 did not change DI response, whereas reduction of ITM activity occurred after phrenicotomy, indicating that both facilitatory and inhibitory segmental inputs are involved in ITM response to loading.


2006 ◽  
Vol 96 (1) ◽  
pp. 197-208 ◽  
Author(s):  
Birgit Larsen ◽  
Michael Voigt

The main aims of this study were 1) to investigate possible phase-, speed-, and task-dependent changes in the quadriceps H-reflex during pedaling, and to achieve this, 2) to develop an optimized H-reflex recording and processing procedure for recording of quadriceps H-reflexes during movement. It was hypothesized that the behavior of the quadriceps H-reflex concerning phase, speed, and task dependency corresponds to the behavior of the soleus H-reflex during rhythmical leg movements. The applied H-reflex procedure appeared to be reliable for obtaining the quadriceps H-reflex modulation during leg movement. The vastus lateralis (VL) and rectus femoris (RF) H-reflexes showed a phase-dependent modulation during pedaling at a frequency of 80 rpm with almost parallel changes in the reflex amplitude and motor recruitment level. However, when the speed of movement was reduced from 80 to 40 revolutions per minute (rpm) and crank load simultaneously increased (i.e., a halving of the movement speed with a constant motor recruitment level), the quadriceps H-reflex modulation pattern changed significantly in relation to the pattern of motor recruitment, i.e., at 40 rpm, the reflex excitability remained high during a gradual derecruitment during power generation in downstroke. Comparison of the “operationally defined H-reflex gain function” obtained during 1) pedaling at 80 rpm and 2) isometric quadriceps contractions in sitting position showed no significant task-dependent changes in the quadriceps H-reflex. Consequently, the hypothesis was only partly corroborated, and the findings indicate differences in the neural control of the soleus and the quadriceps muscle during rhythmical movements.


2002 ◽  
Vol 93 (2) ◽  
pp. 675-684 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Kei Masani ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

To determine quantitatively the features of alternate muscle activity between knee extensor synergists during low-level prolonged contraction, a surface electromyogram (EMG) was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) in 11 subjects during isometric knee extension exercise at 2.5% of maximal voluntary contraction (MVC) for 60 min ( experiment 1). Furthermore, to examine the relation between alternate muscle activity and contraction levels, six of the subjects also performed sustained knee extension at 5.0, 7.5, and 10.0% of MVC ( experiment 2). Alternate muscle activity among the three muscles was assessed by quantitative analysis on the basis of the rate of integrated EMG sequences. In experiment 1, the number of alternations was significantly higher between RF and either VL or VM than between VL and VM. Moreover, the frequency of alternate muscle activity increased with time. In experiment 2, alternating muscle activity was found during contractions at 2.5 and 5.0% of MVC, although not at 7.5 and 10.0% of MVC, and the number of alternations was higher at 2.5 than at 5.0% of MVC. Thus the findings of the present study demonstrated that alternate muscle activity in the quadriceps muscle 1) appears only between biarticular RF muscle and monoarticular vasti muscles (VL and VM), and its frequency of alternations progressively increases with time, and 2) emerges under sustained contraction with force production levels ≤5.0% of MVC.


1984 ◽  
Vol 56 (3) ◽  
pp. 746-752 ◽  
Author(s):  
E. van Lunteren ◽  
W. B. Van de Graaff ◽  
D. M. Parker ◽  
J. Mitra ◽  
M. A. Haxhiu ◽  
...  

The effects of negative pressure applied to just the upper airway on nasal and laryngeal muscle activity were studied in 14 spontaneously breathing anesthetized dogs. Moving average electromyograms were recorded from the alae nasi (AN) and posterior cricoarytenoid (PCA) muscles and compared with those of the genioglossus (GG) and diaphragm. The duration of inspiration and the length of inspiratory activity of all upper airway muscles was increased in a graded manner proportional to the amount of negative pressure applied. Phasic activation of upper airway muscles preceded inspiratory activity of the diaphragm under control conditions; upper airway negative pressure increased this amount of preactivation. Peak diaphragm activity was unchanged with negative pressure, although the rate of rise of muscle activity decreased. The average increases in peak upper airway muscle activity in response to all levels of negative pressure were 18 +/- 4% for the AN, 27 +/- 7% for the PCA, and 122 +/- 31% for the GG (P less than 0.001). Rates of rise of AN and PCA electrical activity increased at higher levels of negative pressure. Nasal negative pressure affected the AN more than the PCA, while laryngeal negative pressure had the opposite effect. The effects of nasal negative pressure could be abolished by topical anesthesia of the nasal passages, while the effects of laryngeal negative pressure could be abolished by either topical anesthesia of the larynx or section of the superior laryngeal nerve. Electrical stimulation of the superior laryngeal nerve caused depression of AN and PCA activity, and hence does not reproduce the effects of negative pressure.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 46 (6) ◽  
pp. 1387-1400 ◽  
Author(s):  
Michael D. McClean ◽  
Stephen M. Tasko

Understanding how orofacial muscle activity and movement covary across changes in speech rate and intensity has implications for the neural control of speech production and the use of clinical procedures that manipulate speech prosody. The present study involved a correlation analysis relating average lower-lip and jaw-muscle activity to lip and jaw movement distance, speed, and duration. Recordings were obtained on orofacial movement, muscle activity, and the acoustic signal in 3 normal speakers as they repeated a simple test utterance with targeted speech rates varying from 60% to 160% of their habitual rate and at targeted vocal intensities of –6 dB and +6 dB relative to their habitual intensity. Surface electromyographic (EMG) recordings were obtained with electrodes positioned to sample primarily the mentalis, depressor labii inferior, anterior belly of the digastric, and masseter muscles. Two-dimensional displacements of the lower lip and jaw in the midsagittal plane were recorded with an electromagnetic system. All participants produced linear changes in percent utterance duration relative to the auditory targets for speech rate variation. Intensity variations ranged from –10 dB to +8 dB. Average EMG levels for all 4 muscles were well correlated with specific parameters of movement. Across the intensity conditions, EMG level was positively correlated with movement speed and distance in all participants. Across the rate conditions, EMG level was negatively correlated with movement duration in all participants, while greater interparticipant variability was noted for correlations relating EMG to speed and distance. For intensity control, it is suggested that converging neural input to orofacial motoneurons varies monotonically with movement distance and speed. In contrast, rate control appears to be more strongly related to the temporal characteristics of neural input than activation level.


2021 ◽  
Author(s):  
Shreya Saxena ◽  
Abigail A. Russo ◽  
John P. Cunningham ◽  
Mark M. Churchland

AbstractLearned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling, and yielded quantitative and qualitative predictions. To evaluate predictions, we recorded motor cortex population activity during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.


Sign in / Sign up

Export Citation Format

Share Document