Electrical stimulation alters fatty acid metabolism in isolated skeletal muscle

1990 ◽  
Vol 68 (6) ◽  
pp. 2473-2481 ◽  
Author(s):  
J. F. Hopp ◽  
W. K. Palmer

Little is known about the contribution of plasma free fatty acid (FFA) and intramuscular triacylglycerol (TG) as substrates for energy production during prolonged electrical stimulation of skeletal muscle. The purpose of this study was to investigate the effects of continuous and intermittent electrical stimulation protocols of different intensities on exogenous FFA oxidation, exogenous FFA incorporation into intracellular TG, and intracellular TG content in the isolated in vitro rat flexor digitorum brevis muscle preparation. Muscles were electrically stimulated for 0.5 h continuously at 0.2 Hz or intermittently (30 s on, 60 s off) at 0.2, 0.4, 0.8, and 5.0 Hz while incubated at 37 degrees C in 0.5 mM palmitate-3% bovine serum albumin medium (pH 7.4) in the presence of insulin (100 microU/ml) and glucose (11 mM). Control muscles were frozen immediately after excision or incubated for 0.5 h. At similar frequencies, less exogenous FFA esterification and more exogenous FFA oxidation occurred during continuous than during intermittent stimulation. As the frequency of intermittent stimulation increased, the amount of exogenous FFA esterified decreased and the amount of exogenous FFA oxidized increased. The data also indicate that at least a portion of TG was constantly being hydrolyzed during electrical stimulation. Under stimulation conditions in which exogenous FFA esterification was below the control (resting muscle) level, intramuscular TG content was significantly decreased compared with control TG content values. Thus both plasma FFA and intramuscular TG are substrates for energy production during electrical stimulation. However, the stimulation parameters employed affect the quantities utilized.

1990 ◽  
Vol 68 (1) ◽  
pp. 348-354 ◽  
Author(s):  
J. F. Hopp ◽  
W. K. Palmer

The contribution of intracellular triacylglycerol (TG) as a substrate for skeletal muscle during electrical stimulation is equivocal. Therefore, the purpose of this study was to investigate the effect of electrical stimulation on the TG content in the isolated intact rat flexor digitorum brevis skeletal muscle preparation by use of two different stimulation protocols. Muscles were electrically stimulated for 1 h either continuously at 1 Hz or intermittently (30 s on, 60 s off) at 5 Hz while incubated in 21 degrees C Krebs bicarbonate buffer (pH 7.4) that contained 11 mM glucose. Control muscles were either frozen immediately after excision or incubated for 1 h. TG content was significantly decreased (P less than 0.05) compared with control concentrations in both stimulated muscle groups, with the greatest reduction (60%) occurring after 5-Hz intermittent stimulation. These data indicate that intramuscular TG is hydrolyzed in response to electrical stimulation in the isolated flexor digitorum brevis muscle preparation. In addition, the type of stimulation (higher frequency intermittent vs. lower frequency continuous) employed influences the amount of intracellular TG hydrolyzed.


2004 ◽  
Vol 287 (1) ◽  
pp. E120-E127 ◽  
Author(s):  
Matthew J. Watt ◽  
Anna G. Holmes ◽  
Gregory R. Steinberg ◽  
Jose L. Mesa ◽  
Bruce E. Kemp ◽  
...  

Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O2 uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased ( P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 ± 0.07; NA, 0.10 ± 0.01 mM). The decreased plasma FFA during NA was associated with decreased ( P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 ± 2.5, NA: 9.1 ± 3.0 nmol·min−1·mg protein−1). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 ± 0.8; NA, 6.3 ± 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 ± 0.07; 180 min: 0.17 ± 0.04 nmol·min−1·mg protein−1). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)α1 activity was not affected by exercise or NA, whereas AMPKα2 activity was increased ( P < 0.05) from rest during exercise in NA and was greater ( P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.


2001 ◽  
Vol 79 (11) ◽  
pp. 932-941 ◽  
Author(s):  
Thomas J Hawke ◽  
Sarah Lessard ◽  
Lisa Vickery ◽  
Shonda L Lipskie ◽  
Michael I Lindinger

The present study compared ouabain-sensitive unidirectional K+ flux into (JinK) and out of (JoutK) perfused rat hindlimb skeletal muscle in situ and mouse flexor digitorum brevis (FDB) in vitro. In situ, 5 mM ouabain inhibited 54 ± 4% of the total JinK in 28 ± 1 min, and increased the net and unidirectional efflux of K+ within 4 min. In contrast, 1.8 mM ouabain inhibited 40 ± 8% of the total JinK in 38 ± 2 min, but did not significantly affect JoutK. In vitro, 1.8 and 0.2 mM ouabain decreased JinK to a greater extent (83 ± 5%) than in situ, but did not significantly affect 42K loss rate compared with controls. The increase in unidirectional K+ efflux (JoutK) with 5 mM ouabain in situ was attributed to increased K+ efflux through cation channels, since addition of barium (1 mM) to ouabain-perfused muscles returned JoutK to baseline values within 12 min. Perfusion with 5 mM ouabain plus 2 mM tetracaine for 30 min decreased JinK 46 ± 9% (0.30 ± 0.03 to 0.16 ± 0.02 µmol·min–1·g–1), however tetracaine was unable to abolish the ouabain-induced increase in unidirectional K+ efflux. In both rat hindlimb and mouse FDB, tetracaine had no effect on JoutK. Perfusion of hindlimb muscle with 0.1 mM tetrodotoxin (TTX, a Na+ channel blocker) decreased JinK by 15 ± 1%, but had no effect on JoutK; subsequent addition of ouabain (5 mM) decreased JinK a further 32 ± 2%. The ouabain-induced increase in unidirectional K+ efflux did not occur when TTX was perfused prior to and during perfusion with 5 mM ouabain. We conclude that 5 mM ouabain increases the unidirectional efflux of K+ from skeletal muscle through a barium and TTX-sensitive pathway, suggestive of voltage sensitive Na+ channels, in addition to inhibiting Na+/K+-ATPase activity.Key words: cardiac glycoside, Na,K pump, K+ channels, Na+ channels, perfused rat hindlimb, flexor digitorum brevis, TTX, barium, tetracaine.


1995 ◽  
Vol 78 (4) ◽  
pp. 1266-1272 ◽  
Author(s):  
L. P. Turcotte ◽  
P. Hespel ◽  
E. A. Richter

The extent to which muscle glycogen depletion affects plasma free fatty acid (FFA) metabolism in contracting skeletal muscle is not well characterized. To study this question, rats were glycogen depleted (GD) or supercompensated (SC) by swimming exercise and diet treatment 24 h before perfusion of their isolated hindquarters at rest and during electrically induced muscle contractions. After 20 min of equilibration with glucose (6 mM), palmitate (2,000 microM), and [1–14C]palmitate, palmitate uptake and oxidation were found to be similar between groups at rest and during electrical stimulation. Palmitate uptake increased by 55% during electrical stimulation and averaged 2.75 +/- 0.56 mumol.g-1.h-1. Resting palmitate oxidation averaged 0.14 +/- 0.03 mumol.g-1.h-1 and increased to 0.53 +/- 0.06 and 0.47 +/- 0.08 mumol.g-1.h-1 during electrical stimulation in GD and SC, respectively. Glucose uptake was significantly higher in GD than in SC at rest and during electrical stimulation and significantly increased in both groups during electrical stimulation to reach values of 11.8 +/- 1.2 and 7.6 +/- 1.4 mumol.g-1.h-1, respectively. Lactate release was lower in GD than in SC at rest and during electrical stimulation and was highest after 2 min of stimulation in both groups. Additional experiments at perfusate palmitate concentrations of 600–900 microM yielded similar results. These results show that, in contracting perfused skeletal muscle, muscle glycogen depletion increases glucose utilization but does not affect total plasma FFA oxidation, suggesting that regulation within pathways of carbohydrate metabolism takes precedence over regulation between pathways of lipid and carbohydrate metabolism.


2008 ◽  
Vol 78 (2) ◽  
pp. 64-69 ◽  
Author(s):  
Choi ◽  
Cho

This study investigated the effect of vitamin B6 deficiency on the utilization and recuperation of stored fuel in physically trained rats. 48 rats were given either vitamin B6-deficient (B6–) diet or control (B6+) diet for 4 weeks and were trained on treadmill for 30 minutes daily. All animals were then subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). The DE group was exercised on treadmill for 1 hour just before being sacrificed. Animals in the AE group were allowed to take a rest for 2 hours after being exercised like the DE group. Glucose and free fatty acids were compared in plasma. Glycogen and triglyceride were compared in liver and skeletal muscle. Protein levels were compared in plasma, liver, and skeletal muscle. Compared with the B6+ group, plasma glucose levels of the B6– group were significantly lower before and after exercise. Muscle glycogen levels of the B6– group were significantly lower than those of the B6+ group regardless of exercise. The liver glycogen level of the B6– group was also significantly lower than that of B6+ group during and after exercise. Before exercise, plasma free fatty acid levels were not significantly different between the B6+ and B6– groups, and plasma free fatty acid levels of the B6– group were significantly lower during and after exercise. The muscle triglyceride level of the B6– group was significantly lower than that of the B6+ group before exercise, and there were no differences between B6+ and B6– groups during and after exercise. Liver triglyceride levels were not significantly different between B6+ and B6– groups. Plasma protein levels of the B6– group were lower than those of B6+ before and after exercise. Muscle protein levels of the B6– group were not significantly different from those of the B6+ group. Liver protein levels of the B6– group were significantly lower than that of the B6+ group after exercise. Liver protein levels of both B6+ and B6– groups were not significantly changed, regardless of exercise. Thus, it is suggested that vitamin B6 deficiency may reduce fuel storage and utilization with exercise in physically trained rats.


Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1791
Author(s):  
Rosa Scala ◽  
Fatima Maqoud ◽  
Nicola Zizzo ◽  
Giuseppe Passantino ◽  
Antonietta Mele ◽  
...  

(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10−5 M in SUR2wt/AV and 8.6 ± 0.4 × 10−6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] “knock-in” mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.


2021 ◽  
Vol 12 ◽  
pp. 204173142098133
Author(s):  
Juan M. Fernández-Costa ◽  
Xiomara Fernández-Garibay ◽  
Ferran Velasco-Mallorquí ◽  
Javier Ramón-Azcón

Muscular dystrophies are a group of highly disabling disorders that share degenerative muscle weakness and wasting as common symptoms. To date, there is not an effective cure for these diseases. In the last years, bioengineered tissues have emerged as powerful tools for preclinical studies. In this review, we summarize the recent technological advances in skeletal muscle tissue engineering. We identify several ground-breaking techniques to fabricate in vitro bioartificial muscles. Accumulating evidence shows that scaffold-based tissue engineering provides topographical cues that enhance the viability and maturation of skeletal muscle. Functional bioartificial muscles have been developed using human myoblasts. These tissues accurately responded to electrical and biological stimulation. Moreover, advanced drug screening tools can be fabricated integrating these tissues in electrical stimulation platforms. However, more work introducing patient-derived cells and integrating these tissues in microdevices is needed to promote the clinical translation of bioengineered skeletal muscle as preclinical tools for muscular dystrophies.


1980 ◽  
Vol 49 (1) ◽  
pp. 102-106 ◽  
Author(s):  
K. M. Baldwin ◽  
A. M. Hooker ◽  
R. E. Herrick ◽  
L. F. Schrader

This study was undertaken to determine the effects of propylthiouracil-induced thyroid deficiency on a) the capacity of muscle homogenates to oxidize [2-14C]pyruvate and [U-14C]palmitate and b) glycogen depletion during exercise in liver and in fast-oxidative-glycogenolytic (FOG), fast-glycogenolytic (FG), and slow-oxidative (SO) muscle. Relative to the rates for normal rats, oxidation with pyruvate was reduced by 53, 68, and 58%, and palmitate by 40, 50, and 48% in FOG, FG, and SO muscle, respectively (P less than 0.05). Normal rats ran longer than thyroid-deficient rats at 26.7 m/min (87 ± 8 vs. 37 ± 5 min). After 40 min of running (22 m/min), the amount of glycogen consumed in normal FOG, FG, and SO muscle and in liver amounted to only 23, 12, 66, and 52%, respectively, of that for their thyroid-deficient counterparts. Also, normal rats maintained higher plasma free fatty acid levels than thyroid-deficient rats during both rest and exercise (P less than 0.05). These findings suggest that thyroid deficiency causes a reduced potential for FFA utilization in skeletal muscle that enhances its consumption of glycogen, thereby limiting endurance capacity.


Sign in / Sign up

Export Citation Format

Share Document