Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis

1991 ◽  
Vol 71 (3) ◽  
pp. 1136-1142 ◽  
Author(s):  
Y. Yamamoto ◽  
R. L. Hughson ◽  
J. C. Peterson

Spectral analysis of heart rate variability (HRV) might provide an index of relative sympathetic (SNS) and parasympathetic nervous system (PNS) activity during exercise. Eight subjects completed six 17-min submaximal exercise tests and one resting measurement in the upright sitting position. During submaximal tests, work rate (WR) was increased for the initial 3 min in a ramp fashion until it reached constant WRs of 20 W, or 30, 60, 90, 100, and 110% of the predetermined ventilatory threshold (Tvent). Ventilatory profile and alveolar gas exchange were monitored breath by breath, and beat-to-beat HRV was measured as R-R intervals of an electrocardiogram. Spectral analysis was applied to the HRV from 7 to 17 min. Low-frequency (0–0.15 Hz) and high-frequency (0.15–1.0 Hz) areas under power spectra (LO and HI, respectively) were calculated. The indicator of PNS activity (HI) decreased dramatically (P less than 0.05) when the subjects exercised compared with rest and continued to decrease until the intensity reached 60% Tvent. The indicator of SNS activity (LO/HI) remained unchanged up to 100% Tvent, whereas it increased abruptly (P less than 0.05) at 110% Tvent. The results suggested that (cardiac) PNS activity decreased progressively from rest to a WR equivalent to 60% Tvent, and SNS activity increased only when exercise intensity exceeded Tvent.

2011 ◽  
Vol 26 (S2) ◽  
pp. 147-147
Author(s):  
T. Diveky ◽  
D. Kamaradova ◽  
A. Grambal ◽  
K. Latalova ◽  
J. Prasko ◽  
...  

The aim of our study is to measure very low frequency band (VLF), low frequency band (LF) and high frequency band (HF) components of R-R interval during orthostatic experiment in panic disorder patients before and after treatment.MethodsWe assessed heart rate variability in 19 patients with panic disorder before and after 6-weeks treatment with antidepressants combined with CBT and 18 healthy controls. They were regularly assessed on the CGI, BAI and BDI. Heart rate variability was assessed during 5 min standing, 5 min supine and 5 min standing positions before and after the treatment. Power spectra were computed using a fast Fourier transformation for very low frequency - VLF (0.0033 - 0.04 Hz), low-frequency - LF (0.04-0.15 Hz) and high frequency - HF (0.15-0.40 Hz) powers.Results19 panic disorder patients entered a 6-week open-label treatment study with combination of SSRI and cognitive behavioral therapy. A combination of CBT and pharmacotherapy proved to be the effective treatment of patients. They significantly improved in all rating scales. There were highly statistical significant differences between panic patients and control group in all components of power spectral analysis in 2nd and in two component of 3rd (LF and HF in standing) positions. There was also statistically significant difference between these two groups in LF/HF ratio in supine position (2nd). During therapy there was tendency to increasing values in all three positions in components of HRV power spectra, but there was only statistically significant increasing in HF1 component.Supported by project IGA MZ ČR NS 10301-3/2009


2005 ◽  
Vol 289 (5) ◽  
pp. H1968-H1975 ◽  
Author(s):  
Rubens Fazan ◽  
Mauro de Oliveira ◽  
Valdo José Dias da Silva ◽  
Luis Fernando Joaquim ◽  
Nicola Montano ◽  
...  

The goal of this study was to determine the baroreflex influence on systolic arterial pressure (SAP) and pulse interval (PI) variability in conscious mice. SAP and PI were measured in C57Bl/6J mice subjected to sinoaortic deafferentation (SAD, n = 21) or sham surgery ( n = 20). Average SAP and PI did not differ in SAD or control mice. In contrast, SAP variance was enhanced (21 ± 4 vs. 9.5 ± 1 mmHg2) and PI variance reduced (8.8 ± 2 vs. 26 ± 6 ms2) in SAD vs. control mice. High-frequency (HF: 1–5 Hz) SAP variability quantified by spectral analysis was greater in SAD (8.5 ± 2.0 mmHg2) compared with control (2.5 ± 0.2 mmHg2) mice, whereas low-frequency (LF: 0.1–1 Hz) SAP variability did not differ between the groups. Conversely, LF PI variability was markedly reduced in SAD mice (0.5 ± 0.1 vs. 10.8 ± 3.4 ms2). LF oscillations in SAP and PI were coherent in control mice (coherence = 0.68 ± 0.05), with changes in SAP leading changes in PI (phase = −1.41 ± 0.06 radians), but were not coherent in SAD mice (coherence = 0.08 ± 0.03). Blockade of parasympathetic drive with atropine decreased average PI, PI variance, and LF and HF PI variability in control ( n = 10) but had no effect in SAD ( n = 6) mice. In control mice, blockade of sympathetic cardiac receptors with propranolol increased average PI and decreased PI variance and LF PI variability ( n = 6). In SAD mice, propranolol increased average PI ( n = 6). In conclusion, baroreflex modulation of PI contributes to LF, but not HF PI variability, and is mediated by both sympathetic and parasympathetic drives in conscious mice.


1991 ◽  
Vol 71 (3) ◽  
pp. 1143-1150 ◽  
Author(s):  
Y. Yamamoto ◽  
R. L. Hughson

Heart rate variability (HRV) spectra are typically analyzed for the components related to low- (less than 0.15 Hz) and high- (greater than 0.15 Hz) frequency variations. However, there are very-low-frequency components with periods up to hours in HRV signals, which might smear short-term spectra. We developed a method of spectral analysis suitable for selectively extracting very-low-frequency components, leaving intact the low- and high-frequency components of interest in HRV spectral analysis. Computer simulations showed that those low-frequency components were well characterized by fractional Brownian motions (FBMs). If the scale invariant, or self-similar, property of FBMs is considered a new time series (x′) was constructed by sampling only every other point (course graining) of the original time series (x). Evaluation of the cross-power spectra between these two (Sxx′) showed that the power of the FBM components was preserved, whereas that of the harmonic components vanished. Subtraction of magnitude of Sxx from the autopower spectra of the original sequence emphasized only the harmonic components. Application of this method to HRV spectral analyses indicated that it might enable one to observe more clearly the low- and high-frequency components characteristic of autonomic control of heart rate.


2019 ◽  
Vol 127 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Binbin Liu ◽  
Saisai Yan ◽  
Xiaoni Wang ◽  
Lin Xie ◽  
Jie Tong ◽  
...  

Frequency domain analysis of heart rate variability (HRV) is a noninvasive method to evaluate the autonomic nervous system (ANS), but the traditional parameters of HRV, i.e., the power spectra of the high-frequency (HF) and low-frequency bands (LF), cannot estimate the activity of the parasympathetic (PNS) and sympathetic nervous systems (SNS) well. The aim of our study was to provide a corrected method to better distinguish the contributions of the PNS and SNS in the HRV spectrum. Respiration has a gating effect on cardiac vagal efferent activity, which induces respiration-locked heart rate (HR) changes because of the fast effect of the PNS. So the respiration-related heart rate (HRr) is closely related to PNS activity. In this study, HR was decomposed into HRr and the respiration-unrelated component (HRru) based on empirical mode decomposition (EMD) and the relationship between HR and respiration. Time-frequency analysis of HRr and HRru was defined as HFr and LFru, respectively, with specific adaptive bands for every signal. Two experimental data sets, representing SNS and PNS activation, respectively, were used for efficiency analysis of our method. Our results show that the corrected HRV predicted ANS activity well. HFr could be an index of PNS activity, LFru mainly reflected SNS activity, and LFru/HFr could be more accurate in representing the sympathovagal balance. NEW & NOTEWORTHY This study includes the time-varying relationship between respiration and heart rate in the analysis of heart rate variability. Correction for low-frequency and high-frequency components based on respiration significantly improved evaluation of the sympathetic and parasympathetic nervous systems.


1985 ◽  
Vol 248 (1) ◽  
pp. H151-H153 ◽  
Author(s):  
B. Pomeranz ◽  
R. J. Macaulay ◽  
M. A. Caudill ◽  
I. Kutz ◽  
D. Adam ◽  
...  

Spectral analysis of spontaneous heart rate fluctuations were assessed by use of autonomic blocking agents and changes in posture. Low-frequency fluctuations (below 0.12 Hz) in the supine position are mediated entirely by the parasympathetic nervous system. On standing, the low-frequency fluctuations increase and are jointly mediated by the sympathetic and parasympathetic nervous systems. High-frequency fluctuations, at the respiratory frequency, are decreased by standing and are mediated solely by the parasympathetic system. Heart rate spectral analysis is a powerful noninvasive tool for quantifying autonomic nervous system activity.


2002 ◽  
Vol 30 (04) ◽  
pp. 463-470 ◽  
Author(s):  
Myeong Soo Lee ◽  
Hwa Jeong Huh ◽  
Byung Gi Kim ◽  
Hoon Ryu ◽  
Ho-Sub Lee ◽  
...  

This study investigates changes in autonomic nervous function through Qi-training. The power spectrum of heart rate variability (HRV) was examined in 20 sedentary healthy subjects and 20 Qi-trainees. It was found that Qi-training in healthy young subjects during controlled respiration increases the high frequency (HF) power and decreases the low frequency / high frequency (LF/HF) power ratio of HRV. These results support the hypothesis that Qi-training increases cardiac parasympathetic tone. In addition, Qi-trainees were found to have higher parasympathetic heart modulation compared with their age-matched, sedentary counterparts. This augmented HRV in Qi-trainees provides further support for long-term Qi-training as a possible non-pharmacological cardio-protective maneuver. In conclusion, Qi-training may stabilize the autonomic nervous system by modulating the parasympathetic nervous system.


2016 ◽  
Vol 43 (3) ◽  
pp. 146-150
Author(s):  
Qazi Farzana Akhter ◽  
Qazi Shamima Akhter ◽  
Farhana Rahman ◽  
Sybilla Ferdousi ◽  
Susmita Sinha

Heart rate variability (HRV) has been considered as an indicator of autonomic nerve function status. We aimed to find out the reference values of heart rate variability by power spectral analysis in our healthy population of both sex. This cross sectional study was conducted in the Department of Physiology, Dhaka Medical College, Dhaka from the period of July 2012 to June 2013. For this, 180 subjects were selected with the age ranging from 15-60 years. All the study subjects were divided into 3 different groups according to age (Group A: 15-30 years; Group B: 31-45 years; Group C: 46-60 years). Each group contained 60 subjects of which 30 were male and 30 were female. Analysis of HRV parameters were done in Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka. Systolic blood pressure, diastolic blood pressure, low frequency normalized unit, low frequency / high frequency ratio were significantly higher in male than female. Again high frequency power, high frequency normalized unit were significantly higher in female than male of same age group. This study concludes that male showed higher cardiac sympathetic activities while female showed higher cardiac parasympathetic activities in different age groups.Bangladesh Med J. 2014 Sep; 43 (3): 146-150


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Joanne W. Y. Chung ◽  
Vincent C. M. Yan ◽  
Hongwei Zhang

Aim.To summarize all relevant trials and critically evaluate the effect of acupuncture on heart rate variability (HRV).Method.This was a systematic review with meta-analysis. Keyword search was conducted in 7 databases for randomized controlled trials (RCTs). Data extraction and risk of bias were done.Results.Fourteen included studies showed a decreasing effect of acupuncture on low frequency (LF) and low frequency to high frequency ratio (LF/HF ratio) of HRV for nonhealthy subjects and on normalized low frequency (LF norm) for healthy subjects. The overall effect was in favour of the sham/control group for high frequency (HF) in nonhealthy subjects and for normalized high frequency (HF norm) in healthy subjects. Significant decreasing effect on HF and LF/HF ratio of HRV when acupuncture was performed on ST36 among healthy subjects and PC6 among both healthy and nonhealthy subjects, respectively.Discussion.This study partially supports the possible effect of acupuncture in modulating the LF of HRV in both healthy and nonhealthy subjects, while previous review reported that acupuncture did not have any convincing effect on HRV in healthy subjects. More published work is needed in this area to determine if HRV can be an indicator of the therapeutic effect of acupuncture.


1997 ◽  
Vol 92 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Gervais Tougas ◽  
Markad Kamath ◽  
Geena Watteel ◽  
Debbie Fitzpatrick ◽  
Ernest L. Fallen ◽  
...  

1. The heart and the oesophagus have similar sensory pathways, and sensations originating from the oesophagus are often difficult to differentiate from those of cardiac origin. We hypothesized that oesophageal sensory stimuli could alter neurocardiac function through autonomic reflexes elicited by these oesophageal stimuli. In the present study, we examined the neurocardiac response to oesophageal stimulation and the effects of electrical and mechanical oesophageal stimulation on the power spectrum of beat-to-beat heart rate variability in male volunteers. 2. In 14 healthy volunteers, beat-to-beat heart rate variability was compared at rest and during oesophageal stimulation, using either electrical (200 μs, 16 mA, 0.2 Hz) or mechanical (0.5 s, 14 ml, 0.2 Hz) stimuli. The power spectrum of beat-to-beat heart rate variability was obtained and its low- and high-frequency components were determined. 3. Distal oesophageal stimulation decreased heart rate slightly (both electrical and mechanical) (P < 0.005), and markedly altered heart rate variability (P < 0.001). Both electrical and mechanical oesophageal stimulation increased the absolute and normalized area of the high-frequency band within the power spectrum (P < 0.001), while simultaneously decreasing the low-frequency power (P < 0.005). 4. In humans, oesophageal stimulation, whether electrical or mechanical, appears to amplify respiratory-driven cardiac vagoafferent modulation while decreasing sympathetic modulation. The technique provides access to vagoafferent fibres and thus may yield useful information on the autonomic effects of visceral or oesophageal sensory stimulation.


Sign in / Sign up

Export Citation Format

Share Document