Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats

1993 ◽  
Vol 74 (5) ◽  
pp. 2161-2165 ◽  
Author(s):  
M. E. Tischler ◽  
E. J. Henriksen ◽  
K. A. Munoz ◽  
C. S. Stump ◽  
C. R. Woodman ◽  
...  

Our knowledge of the effects of unweighting on skeletal muscle of juvenile rapidly growing rats has been obtained entirely by using hindlimb-suspension models. No spaceflight data on juvenile animals are available to validate these models of simulated weightlessness. Therefore, eight 26-day-old female Sprague-Dawley albino rats were exposed to 5.4 days of weightlessness aboard the space shuttle Discovery (mission STS-48, September 1991). An asynchronous ground control experiment mimicked the flight cage condition, ambient shuttle temperatures, and mission duration for a second group of rats. A third group of animals underwent hindlimb suspension for 5.4 days at ambient temperatures. Although all groups consumed food at a similar rate, flight animals gained a greater percentage of body mass per day (P < 0.05). Mass and protein data showed weight-bearing hindlimb muscles were most affected, with atrophy of the soleus and reduced growth of the plantaris and gastrocnemius in both the flight and suspended animals. In contrast, the non-weight-bearing extensor digitorum longus and tibialis anterior muscles grew normally. Earlier suspension studies showed that the soleus develops an increased sensitivity to insulin during unweighting atrophy, particularly for the uptake of 2-[1,2–3H]deoxyglucose. Therefore, this characteristic was studied in isolated muscles within 2 h after cessation of spaceflight or suspension. Insulin increased uptake 2.5- and 2.7-fold in soleus of flight and suspended animals, respectively, whereas it increased only 1.6-fold in control animals. In contrast, the effect of insulin was similar among the three groups for the extensor digitorum longus, which provides a control for potential systemic differences in the animals.

1984 ◽  
Vol 57 (5) ◽  
pp. 1472-1479 ◽  
Author(s):  
S. R. Jaspers ◽  
M. E. Tischler

Atrophy and growth failure of muscle in a tail-cast suspension model were evaluated in hindlimbs of female Sprague-Dawley rats. Based on measurements of food consumption, animal growth rate, urinary excretion of urea and ammonia, and muscle size, 6 days seemed to be the optimum duration of suspension for studying muscle unloading. After 6 days, the soleus, plantaris, and gastrocnemius muscles from suspended animals were 27, 10, and 11% smaller (P less than 0.05), respectively, than those from tail-casted weight-bearing animals. The extensor digitorum longus and tibialis anterior muscles were unaffected by suspension (less than or equal to 6 days) while the triceps brachii hypertrophied (8%, P less than 0.05). Wet weight-to-dry weight ratios were smaller in the plantaris (-0.19, P less than 0.05) and gastrocnemius (-0.19, P less than 0.05) muscles from suspended rats. In the plantaris, this difference coincided with a higher protein concentration (+12 mg/g, P less than 0.001). In vitro measurements of protein metabolism in the soleus muscles of suspended rats showed both slower protein synthesis (P less than 0.05) and faster protein degradation (P less than 0.05), whereas these processes were unaltered in the extensor digitorum longus muscles.


2009 ◽  
pp. 599-603 ◽  
Author(s):  
O Tyapkina ◽  
E Volkov ◽  
L Nurullin ◽  
B Shenkman ◽  
I Kozlovskaya ◽  
...  

Antiorthostatic hindlimb suspension (unloading) decreased the resting membrane potential (RMP) of skeletal muscle fibers in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat by about 10 % within 7 days and more. Inactivation of the membrane Na+, K+-pump by ouabain brought about similar depolarization as unloading. The increased sodium permeability of the membrane was excluded as the major cause of this depolarization by experiments in which TRIS was substituted for Na+ in the medium. On the other hand, the decrease in the electrogenic participation of the Na+,K+-pump is apparently one of the causes of RMP decrease during hypogravity, in EDL muscle in particular.


1982 ◽  
Vol 60 (3) ◽  
pp. 387-391 ◽  
Author(s):  
Franz S. F. Mong ◽  
James L. Poland ◽  
Jerry W. Poland

The metabolic integrity of skeletal muscle grafts must be restored, along with histological regeneration, if muscle transplants are to be clinically acceptable. The purpose of the present study was to contrast glycogen changes in muscle grafts after exercise or fasting with those in normal muscles. The extensor digitorum longus (EDL) and soleus (SOL) muscles were switched to each other's muscle bed in one leg of male Sprague–Dawley rats. Fifty days later, some of the rats were fasted for 48 h and sacrificed either immediately or after 4 h of refeeding. Other rats were run on a treadmill for 30 min (1 mi/h (0.447 m/s)) and sacrificed either immediately or after 4 h of resting. Muscle grafts and contralateral normal muscles of these experimental, as well as control animals (neither exercised nor fasted), were removed for determination of glycogen concentration. The results show that glycogen in muscle grafts, as in normal muscles, decreases with exercise or fasting. After 4 h of rest or refeeding, glycogen is restored in both grafts and normal muscles. It is concluded, therefore, that muscle grafts are metabolically active and that their pattern of utilization and restoration of glycogen in response to physiological events, such as exercise or fasting, is similar to that of normal muscle.


2002 ◽  
Vol 93 (2) ◽  
pp. 526-530 ◽  
Author(s):  
Christopher R. Mitchell ◽  
M. Brennan Harris ◽  
Anthony R. Cordaro ◽  
Joseph W. Starnes

This study determined the role of body temperature during exercise on cytochrome- c oxidase (CytOx) activity, a marker of mitochondrial content, and mitochondrial heat shock protein 70 (mtHSP70), which is required for import of nuclear-coded preproteins. Male, 10-wk-old, Sprague-Dawley rats exercised identically for 9 wk in ambient temperatures of 23°C ( n = 10), 8°C with wetted fur ( n = 8), and 4°C with wetted fur and fan ( n = 7). These conditions maintained exercising core temperature (Tc) at 40.4, 39.2, or 38.0°C (resting temperature), respectively. During weeks 3–9, exercisers ran 5 days/wk up a 6% grade at 20 m/min for 60 min. Animals were housed at 23°C. Gastrocnemius CytOx activity in Tc=38.0°C (83.5 ± 5.5 μatoms O · min−1 · g wet wt−1) was greater than all other groups ( P< 0.05), exceeding sedentary ( n = 7) by 73.2%. Tc of 40.4 and 39.2°C also were higher than sedentary by 22.4 and 37.4%, respectively ( P < 0.05). Quantification of CytOx content verified that the increased activity was due to an increase in protein content. In extensor digitorum longus, a nonactive muscle, CytOx was not elevated in Tc = 38.0°C. mtHSP70 was significantly elevated in gastrocnemius of Tc = 38.0°C compared with sedentary ( P < 0.05) but was not elevated in extensor digitorum longus ( P > 0.05). The data indicate that decreasing exercise Tc may enhance mitochondrial biogenesis and that mtHSP70 expression is not dependent on temperature.


1989 ◽  
Vol 123 (3) ◽  
pp. 429-NP ◽  
Author(s):  
C. M. Ayling ◽  
B. H. Moreland ◽  
J. M. Zanelli ◽  
D. Schulster

ABSTRACT The studies describe alterations after hypophysectomy in the proportion of the type-1 and type-2 fibres in rat skeletal muscles, and the effects of replacement treatment with pituitary human (h) GH. Cytochemical analysis of myosin ATPase, succinate dehydrogenase and lactate dehydrogenase activities in sections of rat hind limb muscles were used as markers of fibre type and revealed that hypophysectomy reduced the proportion of type-1 fibres by 50% in soleus and in extensor digitorum longus muscles. This reduction in the proportion of type-1 fibres was accompanied by the appearance of transitional fibres (type 2C/1B). Following seven daily injections of hGH (60 mIU/day) to hypophysectomized rats, the proportion of type-1 fibres in both soleus and in extensor digitorum longus was increased with a concomitant reduction in the number of transitional fibres. After 11 days of treatment, all these transitional fibres had reverted back to type-1 fibres. Only hGH was observed to elicit this effect; injections of other pituitary hormones had no effect on the proportions of these transitional fibres. These alterations in fibre type occurred more rapidly than the changes reported after prolonged electrical stimulation of muscle or following extended exercise. These findings suggest that hypophysectomy and GH injection can result in a rapid alteration in the fibre composition of skeletal muscle, which may have important implications in terms of the resistance to fatigue and speed of contraction of the muscle. Journal of Endocrinology (1989) 123, 429–435


1971 ◽  
Vol 121 (5) ◽  
pp. 817-827 ◽  
Author(s):  
R. C. Hider ◽  
E. B. Fern ◽  
D. R. London

1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.


2000 ◽  
Vol 279 (5) ◽  
pp. C1558-C1563 ◽  
Author(s):  
Laurence Stevens ◽  
Carole Firinga ◽  
Bärbel Gohlsch ◽  
Bruno Bastide ◽  
Yvonne Mounier ◽  
...  

To investigate the plasticity of slow and fast muscles undergoing slow-to-fast transition, rat soleus (SOL), gastrocnemius (GAS), and extensor digitorum longus (EDL) muscles were exposed for 14 days to 1) unweighting by hindlimb suspension (HU), or 2) treatment with the β2-adrenergic agonist clenbuterol (CB), or 3) a combination of both (HU-CB). In general, HU elicited atrophy, CB induced hypertrophy, and HU-CB partially counteracted the HU-induced atrophy. Analyses of myosin heavy (MHC) and light chain (MLC) isoforms revealed HU- and CB-induced slow-to-fast transitions in SOL (increases of MHCIIa with small amounts of MHCIId and MHCIIb) and the upregulation of the slow MHCIa isoform. The HU- and CB-induced changes in GAS consisted of increases in MHCIId and MHCIIb (“fast-to-faster transitions”). Changes in the MLC composition of SOL and GAS consisted of slow-to-fast transitions and mainly encompassed an exchange of MLC1s with MLC1f. In addition, MLC3f was elevated whenever MHCIId and MHCIIb isoforms were increased. Because the EDL is predominantly composed of type IID and IIB fibers, HU, CB, and HU-CB had no significant effect on the MHC and MLC patterns.


1983 ◽  
Vol 216 (3) ◽  
pp. 605-610 ◽  
Author(s):  
T G Sheehan ◽  
E R Tully

Purine biosynthesis by the ‘de novo’ pathway was demonstrated in isolated rat extensor digitorum longus muscle with [1-14C]glycine, [3-14C]serine and sodium [14C]formate as nucleotide precursors. Evidence is presented which suggests that the source of glycine and serine for purine biosynthesis is extracellular rather than intracellular. The relative incorporation rates of the three precursors were formate greater than glycine greater than serine. Over 85% of the label from formate and glycine was recovered in the adenine nucleotides, principally ATP. Azaserine markedly inhibited purine biosynthesis from both formate and glycine. Cycloserine inhibited synthesis from serine, but not from formate. Adenine, hypoxanthine and adenosine markedly inhibited purine synthesis from sodium [14C]formate.


Sign in / Sign up

Export Citation Format

Share Document