SDH and actomyosin ATPase activities of different fiber types in rat diaphragm muscle

1995 ◽  
Vol 79 (5) ◽  
pp. 1629-1639 ◽  
Author(s):  
G. C. Sieck ◽  
W. Z. Zhan ◽  
Y. S. Prakash ◽  
M. J. Daood ◽  
J. F. Watchko

In the rat diaphragm muscle, the histochemical classification of type I, IIa, IIb, or IIx fibers was correlated with myosin heavy chain (MHC) immunoreactivity. Expression of MHC isoforms in single dissected fibers was also assessed electrophoretically. Most fibers (approximately 86%) expressed a single MHC isoform, and when present, coexpression of MHC-2X and MHC-2B isoforms was most prevalent. Type I and IIa fibers were the smallest, type IIb fibers were the largest, and type IIx fibers were intermediate. Succinate dehydrogenase (SDH) and calcium-activated myosin adenosinetriphosphatase (actomyosin ATPase) activities were measured with quantitative histochemical procedures. Type I and IIa fibers had the highest SDH activities, followed in rank order by type IIx and IIb fibers. Type I fibers had the lowest actomyosin ATPase activity, followed in rank order by type IIa, IIx, and IIb fibers. Across all fibers, there was an inverse relationship between fiber SDH activity and cross-sectional area and a positive correlation between fiber actomyosin ATPase activity and cross-sectional area. The SDH and actomyosin ATPase activities of muscle fibers were also inversely correlated. These phenotypic differences in SDH and ATPase activities may be important in determining the contractile and fatigue properties of different fiber types in the rat diaphragm muscle.

2006 ◽  
Vol 100 (5) ◽  
pp. 1617-1622 ◽  
Author(s):  
Bharathi Aravamudan ◽  
Carlos B. Mantilla ◽  
Wen-Zhi Zhan ◽  
Gary C. Sieck

Denervation (DNV) of rat diaphragm muscle (DIAm) leads to selective atrophy of type IIx and IIb fibers, whereas the cross-sectional area of type I and IIa fibers remains unchanged or slightly hypertrophied. DIAm DNV also increases satellite cell mitotic activity and myonuclear apoptosis. Similar to other skeletal muscles, DIAm fibers are multinucleated, and each myonucleus regulates the gene products in a finite fiber volume, i.e., myonuclear domain (MND). MND size varies across DIAm fiber types in rank order, I < IIa < IIx < IIb [fiber type based on myosin heavy chain isoform expression]. We hypothesized that, after DNV, the total number of myonuclei per fiber does not change and, accordingly, that MND changes proportionately to the change in fiber size regardless of fiber type. Adult rats underwent unilateral (right side) DIAm DNV, and after 2 wk single fibers were dissected. Fiber cross-sectional area, myonuclear number, and MND were measured by confocal microscopy, and these values in DNV DIAm were compared with those obtained in controls. After DNV, type I fibers hypertrophied, type IIa fiber size was unchanged, and type IIx and IIb fibers atrophied compared with control. The total number of myonuclei per fiber was not affected by DNV. Accordingly, after DNV, type I fiber MND increased by 25%, whereas it decreased in type IIx and IIb fibers by 50 and 70%, respectively. These results suggest that MND is not maintained after DNV-induced DIAm fiber hypertrophy or atrophy. These results are interpreted with respect to consequent effects of DNV on myonuclear transcriptional activity and protein turnover.


1987 ◽  
Vol 63 (3) ◽  
pp. 1076-1082 ◽  
Author(s):  
G. C. Sieck ◽  
R. D. Sacks ◽  
C. E. Blanco

The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.


1996 ◽  
Vol 8 (3) ◽  
pp. 391 ◽  
Author(s):  
MD Fratacci ◽  
M Levame ◽  
A Rauss ◽  
H Bousbaa ◽  
G Atlan

The changes occurring in the histochemical characteristics of the rat diaphragm during the postnatal period were examined. Fibre-type distribution, fibre oxidative capacity, i.e. succinate-dehydrogenase (SDH) activity, and cross-sectional area were compared in the costal (COS) and crural (CRU) regions, and across their abdominal and thoracic surfaces. The proportions of type I and IIb fibres in both COS and CRU increased with age, while the proportion of type IIa fibres progressively decreased. For COS, fibre distribution was homogeneous over the entire muscle and did not change after 4 weeks. For CRU, it was heterogeneous with a higher proportion of type I fibres on the thoracic surface as from the first week. All fibre types significantly increased in cross-sectional area between 1 and 8 weeks, with no significant differences in COS and CRU. Mean SDH activity did not differ between COS and CRU or across the muscles. Mean SDH activities-were low and identical in all fibre types at birth, and then increased, peaking at the 6th week in type I and IIa fibres. When total muscle fibre oxidative capacity was calculated from an index including fibre-type proportion, cross-sectional area and mean SDH activity, it was significantly higher at 1 than at 8 weeks after birth; this might have functional implications for the newborn.


1993 ◽  
Vol 74 (2) ◽  
pp. 742-749 ◽  
Author(s):  
D. J. Prezant ◽  
D. E. Valentine ◽  
H. H. Kim ◽  
E. I. Gentry

The effects of 4.5 days of acute starvation, either alone or followed by refeeding (ad libitum), on diaphragm contractility, fatigue, and fiber types were studied in male rats. Contractility and fatigue resistance indexes were measured in an in vitro costal diaphragm strip preparation with direct stimulation at 37 degrees C. Compared with controls, starvation produced a 28 +/- 1% (P < 0.001) reduction in body weight and an 18 +/- 4% (P < 0.001) reduction in costal diaphragm weight. Twitch and tetanic tensions (normalized for weight or cross-sectional area) were not reduced by starvation. Starvation produced significant increases in fatigue resistance indexes after a 5-Hz stimulation paradigm but not after a 100-Hz paradigm, supporting the hypothesis that fatigue resistance is dependent on the energy demand of a given paradigm. The proportions of type I and type II fibers were similar between diaphragms of starved and control rats, but the cross-sectional area of type II fibers decreased significantly by 18 +/- 7% (P < 0.01). Thus, despite the significant decrease in diaphragm weight after starvation, contractility was preserved and fatigue resistance was increased (low-output paradigm). This is consistent with the decrease in type II fiber area. Refeeding restored all parameters so that there were no longer significant differences in body or diaphragm weight, contractility, fatigue, or fiber types.


2002 ◽  
Vol 27 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Michael R.M. Mcguigan ◽  
William J. Kraemer ◽  
Michael R. Deschenes ◽  
Scott E. Gordon ◽  
Takashi Kitaura ◽  
...  

Previous research has indicated that 50 fiber measurements per individual for type I and II fibers would be sufficient to characterize the fiber areas. This study replicated the work of McCall et al. (1998) using the three major fiber types (I, IIA, and IIB) and sampling larger populations of fibers. Random blocks of fibers were also examined to investigate how well they correlated with the overall mean average fiber area. Using random blocks of 50 fibers provided an accurate reflection of the type IIB fibers (r = 0.96-0.98) but not for the type I (r = 0.85-0.94) or IIA fibers (r = 0.80-0.91). Type I fibers were consistently reflected by a random block of 150 fibers (r = 0.95-0.98) while type IIA fibers required random blocks of 200 fibers (r = 0.94-0.98), which appeared to provide an accurate reflection of the cross-sectional area. These results indicate that for a needle biopsy different numbers of fibers are needed depending on the fiber type to accurately characterize the mean fiber population. Key words: fiber type, sample size, cross-sectional area, biopsy


1999 ◽  
Vol 87 (2) ◽  
pp. 634-642 ◽  
Author(s):  
Roland R. Roy ◽  
Steven R. Monke ◽  
David L. Allen ◽  
V. Reggie Edgerton

The effects of 10 wk of functional overload (FO), with and without daily treadmill endurance training, on the cross-sectional area, myonuclear number, and myonuclear domain size of mechanically isolated single fiber segments of the adult rat plantaris were determined. The fibers were typed on the basis of high-resolution gel electrophoresis for separation of specific myosin heavy chain (MHC) isoforms and grouped as type I+ (containing some type I MHC with or without any combination of fast MHCs), type IIa+ (containing some type IIa with or without some type IIx and/or IIb but no type I MHC), and type IIx/b (containing only type IIx and/or IIb MHCs). Type I+ fibers had a higher myonuclear number than did both fast types of fibers in the control and FO, but not in the FO and treadmill trained, rats. All fiber types in both FO groups had a significantly larger (36–90%) cross-sectional area and a significantly higher (61–109%) myonuclear number than did control. The average myonuclear domain size of each fiber type was similar among the three groups, except for a smaller domain size in the type IIx/b fibers of the FO compared with control. In general, these data indicate that during hypertrophy the number of myonuclei increase proportionally to the increase in fiber volume. The maintenance of myonuclear domain size near control values suggests that regulatory mechanisms exist that ensure a tight coupling between the quantity of genetic machinery and the protein requirements of a fiber.


2008 ◽  
Vol 38 (5) ◽  
pp. 1313-1318 ◽  
Author(s):  
Flora Helena de Freitas D'Angelis ◽  
Marco Augusto Giannoccaro da Silva ◽  
Carla Braga Martins ◽  
Guilherme de Camargo Ferraz ◽  
João Ademir de Oliveira ◽  
...  

This study aimed to determine the changes in the Gluteus medius of 4 year-old Brasileiro de Hipismo (BH) horses submitted to light physical activity for 10 months. The study involved 11 horses from the "Nove de Julho" Battalion of the Military Police of São Paulo State (PM-SP). Percutaneous muscle biopsy was performed in horses at maintenance and in those that had participated in routine police work for 10 months with the PM-SP. Fragments of the left Gluteus medius muscle was removed at depths of 20mm and 60mm. To determine the fiber types, the histochemical analyses were performed for myofibrillar adenosine triphosphatase (mATPase) and nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR). The morphometry of the fibers was performed by calculating the cross sectional area (CSA), relative frequency distribution (F) and relative cross-sectional area (RCSA). After the period of physical activity, type IIA fibers showed an increase in F and RCSA at both depths. The type I fibers showed a decrease in F at a depth of 60mm and the type IIX fibers showed no change in F at the two depths. With regard to the results for RCSA, type I and IIX fibers also did not show alterations after 10 months of light physical activity. Low intensity physical activity produced significant adaptations in the Gluteus medius muscle of horses of the BH breed, including changes in metabolic and contractile properties as evidenced by the increase in the area occupied by type IIA fibers at both depths of the biopsy.


1993 ◽  
Vol 74 (3) ◽  
pp. 1212-1219 ◽  
Author(s):  
D. J. Prezant ◽  
T. K. Aldrich ◽  
B. Richner ◽  
E. I. Gentry ◽  
D. E. Valentine ◽  
...  

The effects of long-term (24- to 28-wk) continuous respiratory resistive loading on diaphragm mass, contractility, fatigue, and fiber types were studied in male rats. Increased respiratory resistance was produced by extratracheal banding, and results were compared with sham-operated pair-fed controls. At the time the animals were killed, banded tracheal segment internal diameter was reduced by 57% of control values. Diaphragm surface area and muscle mass (normalized for body mass) increased by 19% of control values. Isometric diaphragm contractility and fatigue resistance indexes were measured using an in vitro diaphragm costal strip preparation at 37 degrees C. Twitch and tetanic stimulations were evoked using direct stimulation. Compared with controls, baseline tensions (normalized for diaphragm cross-sectional area) were significantly decreased at low frequencies. Fatigue resistance (endurance) indexes were significantly increased at all frequencies. These findings were consistent with observed increases in number and cross-sectional area of type I (low-tension high-endurance) fibers. We conclude that the diaphragm adapts to chronic long-term resistive loads by sacrificing peak tensions for an increase in endurance capacity.


2006 ◽  
Vol 7 (3) ◽  
pp. 163-174 ◽  
Author(s):  
Myoung-Ae Choe ◽  
Gyeong Ju An ◽  
Yoon-Kyong Lee ◽  
Ji Hye Im ◽  
Smi Choi-Kwon ◽  
...  

This study examined the effects of daily low-intensity exercise following acute stroke on mass, Type I and II fiber cross-sectional area, and myofibrillar protein content of hind-limb muscles in a rat model. Adult male Sprague-Dawley rats were randomly assigned to 1 of 4 groups (n = 7-9 per group): stroke (occlusion of the right middle cerebral artery [RMCA]), control (sham RMCA procedure), exercise, and stroke-exercise. Beginning 48 hours post-stroke induction/sham operation, rats in the exercise group had 6 sessions of exercise in which they ran on a treadmill at grade 10 for 20 min/day at 10 m/min. At 8 days poststroke, all rats were anesthetized and soleus, plantaris, and gastrocnemius muscles were dissected from both the affected and unaffected sides. After 6 sessions of exercise following acute ischemic stroke, the stroke-exercise group showed the following significant (p < .05) increases compared to the stroke-only group: body weight and dietary intake, muscle weight of affected soleus and both affected and unaffected gastrocnemius muscle, Type I fiber cross-sectional area of affected soleus and both affected and unaffected gastrocnemius muscle, Type II fiber cross-sectional area of the unaffected soleus, both affected and unaffected plantaris and gastrocnemius muscle, Type II fiber distribution of affected gastrocnemius muscle, and myofibrillar protein content of both affected and unaffected soleus muscle. Daily low-intensity exercise following acute stroke attenuates hind-limb muscle atrophy in both affected and unaffected sides. The effects of exercise are more pronounced in the soleus and gastrocnemius as compared to the plantaris muscle.


1999 ◽  
Vol 276 (2) ◽  
pp. R591-R596 ◽  
Author(s):  
H. Green ◽  
C. Goreham ◽  
J. Ouyang ◽  
M. Ball-Burnett ◽  
D. Ranney

To examine the hypothesis that increases in fiber cross-sectional area mediated by high-resistance training (HRT) would result in a decrease in fiber capillarization and oxidative potential, regardless of fiber type, we studied six untrained males (maximum oxygen consumption, 45.6 ± 2.3 ml ⋅ kg−1 ⋅ min−1; mean ± SE) participating in a 12-wk program designed to produce a progressive hypertrophy of the quadriceps muscle. The training sessions, which were conducted 3 times/wk, consisted of three sets of three exercises, each performed for 6–8 repetitions maximum (RM). Measurements of fiber-type distribution obtained from tissue extracted from the vastus lateralis at 0, 4, 7, and 12 wk indicated reductions ( P < 0.05) in type IIB fibers (15.1 ± 2.1% vs. 7.2 ± 1.3%) by 4 wk in the absence of changes in the other fiber types (types I, IIA, and IIAB). Training culminated in a 17% increase ( P < 0.05) in cross-sectional area by 12 wk with initial increases observed at 4 wk. The increase was independent of fiber type-specific changes. The number of capillaries in contact with each fiber type increased by 12 wk, whereas capillary contacts-to-fiber area ratios remained unchanged. In a defined cross-sectional field, HRT also increased the capillaries per fiber at 12 wk. Training failed to alter cellular oxidative potential, as measured by succinic dehydrogenase (SDH) activity, regardless of fiber type and training duration. It is concluded that modest hypertrophy induced by HRT does not compromise cellular tissue capillarization and oxidative potential regardless of fiber type.


Sign in / Sign up

Export Citation Format

Share Document