Estradiol effect on anterior crural muscles-tibial bone relationship and susceptibility to injury

1996 ◽  
Vol 80 (5) ◽  
pp. 1660-1665 ◽  
Author(s):  
G. L. Warren ◽  
D. A. Lowe ◽  
C. L. Inman ◽  
O. M. Orr ◽  
H. A. Hogan ◽  
...  

The study's objective was to determine whether estradiol (E2) deficiency alters the functional relationship of muscle to bone and causes a differential increase in injury susceptibility. Ovariectomized 6-wk-old mice were administered E2 (40 micrograms. day-1. kg-1; n = 8) or the oil vehicle (n = 8) for 21 days. The anterior crural muscles of the left hindlimb were then stimulated to produce 150 maximal in vivo eccentric contractions. In vitro functional measurements were then made on the extensor digitorum longus (EDL) muscle and tibia from both the exercised and unexercised legs. The maximal isometric torque produced by the anterior crural muscles before the eccentric contraction protocol and the unexercised EDL maximal isometric tetanic force (P(0)) were higher in E2-treated mice by 18 and 14%, respectively (P < or = 0.03). Both ultimate load and stiffness for the unexercised tibia were higher by 16% in E2-treated mice (P < or = 0.03). The muscle-to-bone relationship of these measurements was unaffected by E2 status (P > or = 0.59). No evidence for increased injury susceptibility was found in either tissue from E2-deficient mice. In fact, the decrement in P(0) was only 36.9 +/- 3.8% in exercised EDL muscles from E2-deficient mice compared with 50.6 +/- 4.2% in exercised muscles from E2-treated mice (P = 0.03). Tibia stiffness was 3.9% higher in bones from exercised legs than in bones from unexercised legs (72.64 +/- 2.77 vs. 69.95 +/- 2.66 N/mm; P = 0.05) with ultimate load showing a similar trend (P = 0.07); no effect of E2 status was observed on these differences (P > or = 0.53). In conclusion, the functional relationship of bone to muscle and the susceptibility to injury in bone are not altered by the presence of E2 in ovariectomized mice; however, E2 does increase injury susceptibility in the EDL muscle.

2018 ◽  
Vol 29 (6) ◽  
pp. 1624-1635 ◽  
Author(s):  
Clara Vilches ◽  
Emilia Boiadjieva-Knöpfel ◽  
Susanna Bodoy ◽  
Simone Camargo ◽  
Miguel López de Heredia ◽  
...  

Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y+LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivo.Methods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo, we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice).Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y+LAT1/CD98hc.Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo, and y+LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans.


Author(s):  
Alison Gartland ◽  
Katherine A. Buckley ◽  
Robert A. Hipskind ◽  
M. J. Perry ◽  
J. H. Tobias ◽  
...  

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 3997-4002 ◽  
Author(s):  
Dirk Meyer ◽  
Carsten Schiller ◽  
Jürgen Westermann ◽  
Shozo Izui ◽  
Wouter L. W. Hazenbos ◽  
...  

Abstract In autoimmune hemolytic anemia (AIHA), there is accumulating evidence for an involvement of FcγR expressed by phagocytic effector cells, but demonstration of a causal relationship between individual FcγRs and IgG isotypes for disease development is lacking. Although the relevance of IgG isotypes to human AIHA is limited, we could show a clear IgG isotype dependency in murine AIHA using pathogenic IgG1 (105-2H) and IgG2a (34-3C) autoreactive anti–red blood cell antibodies in mice defective for FcγRIII, and comparing the clinical outcome to those in wild-type mice. FcγRIII-deficient mice were completely resistent to the pathogenic effects of 105-2H monoclonal antibody, as shown by a lack of IgG1-mediated erythrophagocytosis in vitro and in vivo. In addition, the IgG2a response by 34-3C induced a less severe but persistent AIHA in FcγRIII knock-out mice, as documented by a decrease in hematocrit. Blocking studies indicated that the residual anemic phenotype induced by 34-3C in the absence of FcγRIII reflects an activation of FcγRI that is normally coexpressed with FcγRIII on macrophages. Together these results show that the pathogenesis of AIHA through IgG1-dependent erythrophagocytosis is exclusively mediated by FcγRIII and further suggest that FcγRI, in addition to FcγRIII, contributes to this autoimmune disease when other IgG isotypes such as IgG2a are involved.


1997 ◽  
Vol 24 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Jaetae Lee ◽  
Kayhan Garmestani ◽  
Chuanchu Wu ◽  
Martin W. Brechbiel ◽  
Hye K. Chang ◽  
...  

2017 ◽  
Vol 37 (5) ◽  
pp. 823-835 ◽  
Author(s):  
Christopher W. Smith ◽  
Steven G. Thomas ◽  
Zaher Raslan ◽  
Pushpa Patel ◽  
Maxwell Byrne ◽  
...  

Objective— Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif–containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif–containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1–deficient mice. Approach and Results— Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1–deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI–specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI–FcRγ-chain and integrin αIIbβ3 in megakaryocytes because of enhanced Src family kinase activity. Conclusions— Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein–coupled receptors.


1932 ◽  
Vol 16 (2) ◽  
pp. 233-242 ◽  
Author(s):  
B. G. Wilkes ◽  
Elizabeth T. Palmer

1. The pH-activity relationship of invertase has been studied in vivo and in vitro under identical external environmental conditions. 2. The effect of changing (H+) upon the sucroclastic activity of living cells of S. cerevisiae and of invertase solutions obtained therefrom has been found, within experimental error, to be identical. 3. The region of living yeast cells in which invertase exerts its physiological activity changes its pH freely and to the same extent as that of the suspending medium. It is suggested that this may indicate that this intracellular enzyme may perform its work somewhere in the outer region of the cell. 4. In using live cells containing maltase, no evidence of increased sucroclastic activity around pH 6.9, due to the action of Weidenhagen's α-glucosidase (maltase), was found.


1977 ◽  
Vol 43 (5) ◽  
pp. 839-843 ◽  
Author(s):  
J. A. Severson ◽  
R. D. Fell ◽  
J. G. Tuig ◽  
D. R. Griffith

Plasma corticosterone concentrations and in vitro adrenal secretion of corticosterone were determined in exercise-trained rats. Rats, 100, 200, and 300 days of age, were trained for a 10-wk period by treadmill running. Following the training program, rats were subjected to an acute bout of swimming. Acute swimming elevated plasma corticosterone concentrations in all age groups. At 170 days of age, the plasma corticosterone concentration following swimming was higher in exercise-trained rats than in controls. The opposite was true of acutely swum rats at 270 and 370 days of age. Acute swimming elevated the in vitro adrenal gland response to adrenocorticotropic hormone stimulation in control rats at all ages and in trained rats at 170 days of age. The in vivo relationship of epinephrine and the pituitary adrenal system is suggested as a mechanism which could have caused this response. The relationship of secretion rates to plasma corticosterone concentrations indicated that extra-adrenal mechanisms, such as decreased turnover, were also responsible for the elevated plasma corticosterone levels observed in response to acute swimming.


1997 ◽  
Vol 272 (3) ◽  
pp. L479-L485 ◽  
Author(s):  
M. Ikegami ◽  
T. R. Korfhagen ◽  
M. D. Bruno ◽  
J. A. Whitsett ◽  
A. H. Jobe

In the present study we asked if surfactant metabolism was altered in surfactant protein (SP) A-deficient mice in vivo. Although previous studies in vitro demonstrated that SP-A modulates surfactant secretion and reuptake by type II cells, mice made SP-A deficient by homologous recombination grow and reproduce normally and have normal lung function. Alveolar and lung tissue saturated phophatidylcholine (Sat PC) pools were 50 and 26% larger, respectively, in SP-A(-/-) mice than in SP-A(+/+) mice. Radiolabeled choline and palmitate incorporation into lung Sat PC was similar both in vivo and for lung tissue slices in vitro from SP-A(+/+) and SP-A(-/-) mice. Percent secretion of radiolabeled Sat PC was unchanged from 3 to 15 h, although SP-A(-/-) mice retained more labeled Sat PC in the alveolar lavages at 48 h (consistent with the increased surfactant pool sizes). Clearance of radiolabeled dipalmitoylphosphatidylcholine and SP-B from the air spaces after intratracheal injection was similar in SP-A(-/-) and SP-A(+/+) mice. Lack of SP-A had minimal effects on the overall metabolism of Sat PC or SP-B in mice.


Sign in / Sign up

Export Citation Format

Share Document