Influence of upper airway pressure oscillations on soft palate muscle electromyographic activity

1996 ◽  
Vol 81 (3) ◽  
pp. 1190-1196 ◽  
Author(s):  
A. Brancatisano ◽  
T. Van der Touw ◽  
N. O'Neill ◽  
T. C. Amis

Snoring is characterized by high-frequency (30-50 Hz) pressure oscillations (HFPO) in the upper airway (UA). The soft palate is a major oscillating structure during snoring, and soft palate muscle (SPM) activity is an important determinant of velopharyngeal patency. Consequently, we examined the effect of artificial HFPO applied to the UA on the integrated electromyographic (EMG) activity of the SPMs in 11 supine mouth-closed anesthetized (pentobarbital sodium/chloralose) dogs breathing spontaneously via a tracheostomy. The EMGs of the palatinus (Pal; n = 11), levator veli palatini (LP; n = 9), and tensor veli palatini (TP; n = 8) were monitored with intramuscular fine-wire electrodes. Peak inspiratory and peak expiratory EMG activity was measured in arbitrary units (au) as the mean of five consecutive breaths. HFPO [+/- 4.5 +/- 0.4 (SE) cmH2O; 30 Hz inverted question mark applied at the laryngeal end of the isolated UA increased peak inspiratory EMG from 3.3 +/- 2.0 to 8.4 +/- 1.7 au (P < 0.05) for Pal and from 2.0 +/- 1.1 to 7.3 +/- 2.7 au (P < 0.05) for LP. For the TP, increases were evident in four dogs, but mean values for the group did not change (5.8 +/- 2.4 to 11.0 +/- 4.1 au, P = 0.5). The peak expiratory EMG did not change for any SPM (all P > 0.3). Thus HFPO applied to the UA augments inspiratory SPM activity. Reflex augmentation of SPM activity by HFPO may serve to dilate the retropalatal airway and/or stiffen the soft palate during inspiration in an attempt to stabilize UA geometry during snoring.

1994 ◽  
Vol 77 (6) ◽  
pp. 2600-2605 ◽  
Author(s):  
T. Van der Touw ◽  
N. O'Neill ◽  
T. Amis ◽  
J. Wheatley ◽  
A. Brancatisano

We studied the effects of increasing respiratory drive on electromyographic (EMG) soft palate muscle (SPM) activity in nine anesthetized tracheostomy-breathing dogs during hypoxic hypercapnia (HH) with a 14% O2–8% CO2–78% N2 inspired gas mixture. Moving time average EMG activity was recorded from palatinus (PAL), levator veli palatini (LP), and tensor veli palatini (TP) muscles (with bipolar fine-wire electrodes) and diaphragm (DIA; with bipolar hook electrodes). During HH, peak inspiratory DIA activity increased from 18.8 +/- 1.3 to 30.1 +/- 2.0 arbitrary units and minute ventilation increased from 6.2 +/- 0.3 to 18.3 +/- 1.8 l/min (both P < 0.001). Phasic inspiratory, expiratory, and/or tonic EMG activity was present in each SPM during room air breathing (control) and increased during HH (P < 0.05), except for phasic inspiratory PAL and phasic expiratory TP activities. Peak inspiratory LP and TP activities increased during HH to 250 and 179% of control, respectively, and peak expiratory activity increased to 187, 235, and 181% of control in PAL, LP, and TP, respectively. These findings demonstrate respiratory-related regulation of SPM activity independent of local reflex control from the upper airway. However, the combined inspiratory and expiratory phasic recruitment of these muscles differs from the inspiratory recruitment of known upper airway dilator muscles.


1999 ◽  
Author(s):  
Maruti R. Gudavalli ◽  
Jerrilyn A. Backman ◽  
Steven J. Kirstukas ◽  
Anant V. Kadiyala ◽  
Avinash G. Patwardhan ◽  
...  

Abstract The objective of this study was to determine the electromyographic (EMG) activity of the superficial muscles during the treatment of low back patients during a conservative procedure known as the Cox flexion-distraction procedure. A total of 33 low back pain patients were recruited for this study from chiropractic and allopathic orthopedic clinics. EMG signals were collected while the patient was in a prone relaxed position, during the treatment using the flexion-distraction procedure, and during maximum voluntary exertions in the three planes (flexion, extension, left and right lateral bending, and left and right twisting). The mean values of the Root Mean Square (RMS) values of EMG ratios during treatment versus resting indicate that the muscles are active during the treatment. This activity is more than the activity at rest. However the mean values of the RMS EMG ratios (during treatment versus maximum voluntary contraction) are small indicating that the muscle activity during treatment may not influence the treatment loads. The left and right muscles in all muscle groups were similarly active. During the treatment, erector spinae muscles were the most active, followed by the external oblique, and the rectus abdominus muscles. The results from this study provide quantitative data for the muscle activity during the flexion-distraction treatment. This information can be incorporated into computer models to estimate the loads generated during the flexion-distraction treatment due to the muscle activity compared to the loads generated by the chiropractic physician.


Author(s):  
Jamileh Fatahi ◽  
Maryam Amiri Jahromi ◽  
Fahimeh Hajiabolhassan ◽  
Amirsalar Jafarpisheh ◽  
Nariman Rahbar ◽  
...  

Background and Aim: The quick speech in noise (Q-SIN) test shows the difficulty of spee­ch perception in noise by specifying signal to noise ratio (SNR) loss. Although the Persian version of Q-SIN has been already constructed, the high-frequency emphasis version of this test is not available. The present study aimed to construct six lists with high-frequency emphasis and implement it. Methods: We are going to prepare a high-frequ­ency emphasis version of Q-SIN and then test it on a small sample. First, researchers designed the relevant sentences; then experts examined their content and face validity. According to the criteria for developing the Q-SIN test, six lists with high-frequency emphasis were prepared. The test was examined on 26 (13 male and 13 female), 18−35 years old individuals with nor­mal hearing. To determine the test reliability, it was re-administered three weeks later with the same conditions. Results: Of 76 sentences prepared, 36 sentences received enough credit after determination of their content and face validity. These 36 senten­ces were used to make 6 lists. The mean value of SNR50 in the Persian language was obtained -4 dB. The mean values of SNR loss in 6 lists were -1.65, -1.8, -2.23, -1.61, -2.38 and -2.07. The results showed equivalency of lists 1, 2, 3, 4, and 6. Examination of test-retest reliability indicated that all lists except the list 2were reliable. Conclusion: The lists of 1, 3, 4, and 6 are reli­able and equivalent and can be used in clinical application.


2022 ◽  
Vol 20 (4) ◽  
pp. 95-100
Author(s):  
M. V. Chubarnova ◽  
A. B. Davydov ◽  
V. A. Esin ◽  
O. B. Davydova ◽  
I. O. Kostin

Introduction. The outbreak of a new coronavirus infection has become a challenge for the global health system. The COVID-19 infection is directly related to various disorders of the cardiovascular system, including the microcirculatory bed, caused by thrombotic events and deteriorations of blood rheology. Aims. The paper reports on the results of a study of Doppler sonographic parameters changes in patients with a novel coronavirus infection over the past 6 months. Materials and methods. We assessed the oral mucosa microcirculation in three segments using the high-frequency ultrasound dopple-rography. Results. We recorded the linear and volumetric blood flow rates and the Gosling and Purselo indexes in the course of our work. When comparing the obtained average statistical parameters of blood flow velocity, the linear and volumetric blood flow rates in patients of both groups were found to be lain in the same range and the mean values of Vas, Vam, Qas were equal. The mean values of the Purselo resistance index were closer to 1,0 in patients with COVID-19, and the values of the Gosling pulsation index (PI) were on average 53.3 % higher than in the control group. Conclusion. We evaluated the screening capabilities and potential of high-frequency ultrasound dopplerography for use in patients of different age groups and different somatic status.


1993 ◽  
Vol 74 (6) ◽  
pp. 2694-2703 ◽  
Author(s):  
M. J. Wasicko ◽  
J. S. Erlichman ◽  
J. C. Leiter

We sought to determine if the upper airway response to an added inspiratory resistive load (IRL) during wakefulness could be used to predict the site of upper airway collapse in patients with obstructive sleep apnea (OSA). In 10 awake patients with OSA, we investigated the relationship between resistance in three segments of the upper airway (nasal, nasopharyngeal, and oropharyngeal) and three muscles known to influence these segments (alae nasi, tensor veli palatini, and genioglossus) while the patient breathed with or without a small IRL (2 cmH2O.l–1.s). During IRL, patients with OSA exhibited increased nasopharyngeal resistance and no significant increase in either the genioglossus or tensor veli palatini activities. Neither nasal resistance nor alae nasi EMG activity was affected by IRL. We contrasted this to the response of five normal subjects, in whom we found no change in the resistance of either segment of the airway and no change in the genioglossus EMG but a significant activation of the tensor palatini. In six patients with OSA, we used the waking data to predict the site of upper airway collapse during sleep and we had limited success. The most successful index (correct in 4 of 6 patients) incorporated the greatest relative change in segmental resistance during IRL at the lowest electromyographic activity. We conclude, in patients with OSA, IRL narrows the more collapsible segment of the upper airway, in part due to inadequate activation of upper airway muscles. However, it is difficult to predict the site of upper airway collapse based on the waking measurements where upper airway muscle activity masks the passive airway characteristics.


2011 ◽  
Vol 110 (1) ◽  
pp. 69-75 ◽  
Author(s):  
S. Cheng ◽  
J. E. Butler ◽  
S. C. Gandevia ◽  
L. E. Bilston

The electromyographic (EMG) activity of human upper airway muscles, particularly the genioglossus, has been widely measured, but the relationship between EMG activity and physical movement of the airway muscles remains unclear. We aimed to measure the motion of the soft tissues surrounding the airway during normal and loaded inspiration on the basis of the hypothesis that this motion would be affected by the addition of resistance to breathing during inspiration. Tagged MR imaging of seven healthy subjects was performed in a 3-T scanner. Tagged 8.6-mm-spaced grids were used, and complementary spatial modulation of magnetization images were acquired beginning ∼200 ms before inspiratory airflow. Deformation of tag line intersections was measured. The genioglossus moved anteriorly during normal and loaded inspiration, with less movement during loaded inspiration. The motion of tissues at the anterior border of the upper airway was nonuniform, with larger motions inferiorly. At the level of the soft palate, the lateral dimension of the airway decreased significantly during loaded inspiration (−0.15 ± 0.09 and −0.48 ± 0.09 mm during unloaded and loaded inspiration, respectively, P < 0.05). When resistance to inspiratory flow was added, genioglossus motion and lateral dimensions of the airway at the level of the soft palate decreased. Our results suggest that genioglossus motion begins early to dilate the airway prior to airflow and that inspiratory loading reduces the anterior motion of the genioglossus and increases the collapse of the lateral airway walls at the level of the soft palate.


2014 ◽  
Vol 11 (S308) ◽  
pp. 631-635
Author(s):  
Alla P. Miroshnichenko

AbstractWe consider evolution properties of galaxies and quasars with steep radio spectrum at the decametre band from the UTR-2 catalogue. The ratios of source's monochromatic luminosities at the decametre and high-frequency bands display the dependence on the redshift, linear size, characteristic age of examined objects. At that, the mean values of corresponding ratios for considered galaxies and quasars have enough close quantities,testifying on the unified model of sources. We analyse obtained relations for two types of steep-spectrum sources (with linear steep spectrum (S) and low-frequency steepness after a break (C+)) from the UTR-2 catalogue.


1985 ◽  
Vol 58 (4) ◽  
pp. 1252-1256 ◽  
Author(s):  
P. M. Suratt ◽  
R. McTier ◽  
S. C. Wilhoit

The alae nasi is an accessible dilator muscle of the upper airway located in the nose. We measured electromyograms (EMG) of the alae nasi to determine the relationship between their activity and timing to contraction of the rib cage muscles and diaphragm during obstructive apnea in nine patients. Alae nasi EMG were measured with surface electrodes and processed to obtain a moving time average. Contraction of the rib cage and diaphragm during apneas was detected with esophageal pressure. During non-rapid-eye-movement (NREM) sleep, there was a significant correlation in each patient between alae nasi EMG activity and the change in esophageal pressure. During rapid-eye-movement (REM) sleep, correlations were significantly lower than during NREM sleep. As the duration of each apnea increased, the activation of alae nasi EMG occurred progressively earlier than the change in esophageal pressure. We conclude that during obstructive apneas in NREM sleep, activity of the alae nasi increases when diaphragm and rib cage muscle force increases and the activation occurs earlier as each apneic episode progresses.


1999 ◽  
Vol 517 (1) ◽  
pp. 259-271 ◽  
Author(s):  
Peter R. Eastwood ◽  
Makoto Satoh ◽  
Aidan K. Curran ◽  
Maria T. Zayas ◽  
Curtis A. Smith ◽  
...  

2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P198-P198
Author(s):  
Uwe Schuschnig ◽  
Ashley Norris Weigand ◽  
Manfred Keller ◽  
Axel Krüner ◽  
Dominik Müller

Problem Nasal sprays containing inhaled corticosteroids are widely used for the treatment of chronic, allergic and acute sinusitis. However, nasal sprays deposit mainly on the nasal valve and on the anterior portion of the nose, and are rapidly cleared from there. Clinical efficacy data are equivocal which might be caused by the inability of nasal sprays to reach into the posterior regions of the nose. Hence, a drug delivery system such as the PARI VibrENT designed to target the deep nose and the paranasal cavities via a pulsating aerosol may offer substantial benefits. Methods Nebulization efficiency was investigated by a novel cast deposition model of the upper airway including paranasal sinuses developed by PARI GmbH (Munich, Germany). 0.5 mL of a captisol enabled budesonide inhalation solution (CBIS, 480 μg Budesonide/ml) was completely aerosolized into each nostril. Consequently, in total 1 ml or 480 μg of Budesonide were administered in about 3 minutes. Sinus deposition was measured by extracting the deposited drug with a defined volume of solvent and assayed by HPLC. Results The mean values are as follows: the mean paranasal deposition was 15.9% of the initially charged budesonide amount. Only about 2% of the initial budesonide charge remained in the nebulizer, whereas 57.7% deposited in the nasal cavity, 15.2 % were expelled and 90.8 % of the drug was recovered. Deposition in the single sinus cavities ranged from 0.1% up to 7% depending significantly on sinus volume (p<0.01) and ostium diameter (p<0.01). Conclusion Relevant drug amounts could be delivered by the VibrENT into the nose and paranasal cavities of the nasal cast. Sinus deposition depends on its anatomy and was highest with ostium diameters from 1.5 to 3 mm. Significance Significant sinus deposition of abudesonide solution may be attainable through the use of the VibrENT nebulizer system. Clinical studies are warranted.


Sign in / Sign up

Export Citation Format

Share Document