Decreased insulin action on muscle glucose transport after eccentric contractions in rats

1996 ◽  
Vol 81 (5) ◽  
pp. 1924-1928 ◽  
Author(s):  
Sven Asp ◽  
Erik A. Richter

Asp, Sven, and Erik A. Richter. Decreased insulin action on muscle glucose transport after eccentric contractions in rats. J. Appl. Physiol. 81(5): 1924–1928, 1996.—We have recently shown that eccentric contractions (Ecc) of rat calf muscles cause muscle damage and decreased glycogen and glucose transporter GLUT-4 protein content in the white (WG) and red gastrocnemius (RG) but not in the soleus (S) (S. Asp, S. Kristiansen, and E. A. Richter. J. Appl. Physiol. 79: 1338–1345, 1995). To study whether these changes affect insulin action, hindlimbs were perfused at three different insulin concentrations (0, 200, and 20,000 μU/ml) 2 days after one-legged eccentric contractions of the calf muscles. Compared with control, basal glucose transport was slightly higher ( P < 0.05) in Ecc-WG and -RG, whereas it was lower ( P < 0.05) at both submaximal and maximal insulin concentrations in the Ecc-WG and at maximal concentrations in the Ecc-RG. In the Ecc-S, the glucose transport was unchanged in hindquarters perfused in the absence or presence of a submaximal stimulating concentration of insulin, whereas it was slightly ( P < 0.05) higher during maximal insulin stimulation compared with control S. At the end of perfusion the glycogen concentrations were lower in both Ecc-gastrocnemius muscles compared with control muscles at all insulin concentrations. Fractional velocity of glycogen synthase increased similarly with increasing insulin concentrations in Ecc- and control WG and RG. We conclude that insulin action on glucose transport but not glycogen synthase activity is impaired in perfused muscle exposed to prior eccentric contractions.

1995 ◽  
Vol 79 (4) ◽  
pp. 1338-1345 ◽  
Author(s):  
S. Asp ◽  
S. Kristiansen ◽  
E. A. Richter

The effects of concentric and muscle-damaging eccentric contractions on muscle glucose transporter GLUT-4 content were studied in rat muscles. Rats were anesthetized, the calf muscles on one side were stimulated electrically for concentric or eccentric contractions, and bilateral calf muscles were obtained in the postexercise period. Inflammatory and phagocytic cells accumulated in the eccentric white and red gastrocnemius muscles, whereas there were only discrete changes in the eccentric soleus. Glycogen was depleted to the same extent in the white and red gastrocnemius muscles after both types of stimulation, and it remained decreased > 2 days in eccentric muscles. The total GLUT-4 protein content was decreased in the eccentric white and red gastrocnemius muscles 1 and 2 days after the eccentric stimulation, whereas the maximal activity of glycogen synthase was unaffected at these time points. In conclusion, our one-legged stimulation model caused eccentric muscle damage in the white and red gastrocnemius, whereas only minor damage was observed in the soleus muscle. In damaged muscle, muscle glycogen and GLUT-4 protein content were decreased for > 2 days. These findings may suggest (but do not prove) that decreased muscle GLUT-4 protein is involved in the delayed glycogen resynthesis after eccentric exercise.


2005 ◽  
Vol 25 (21) ◽  
pp. 9713-9723 ◽  
Author(s):  
Young-Bum Kim ◽  
Odile D. Peroni ◽  
William G. Aschenbach ◽  
Yasuhiko Minokoshi ◽  
Ko Kotani ◽  
...  

ABSTRACT Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3β (GSK3β) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.


1995 ◽  
Vol 270 (4) ◽  
pp. 1679-1684
Author(s):  
Polly A. Hansen ◽  
Eric A. Gulve ◽  
Bess Adkins Marshall ◽  
Jiaping Gao ◽  
Jeffrey E. Pessin ◽  
...  

2001 ◽  
Vol 226 (4) ◽  
pp. 283-295 ◽  
Author(s):  
Robert V. Farese

Insulin provokes rapid changes in phospholipid metabolism and thereby generates biologically active lipids that serve as intracellular signaling factors that regulate glucose transport and glycogen synthesis. These changes include: (i) activation of phosphatidylinositol 3-kinase (PI3K) and production of PIP3; (ii) PIP3-dependent activation of atypical protein kinase Cs (PKCs); (iii) PIP3-dependent activation of PKB; (iv) PI3K-dependent activation of phospholipase D and hydrolysis of phosphatidyicholine with subsequent increases in phosphatidic acid (PA) and diacyiglycerol (DAG); (v) PI3K-independent activation of glycerol-3-phosphate acylytansferase and increases in de novo synthesis of PA and DAG; and (vi) activation of DAG-sensitive PKCs. Recent findings suggest that atypical PKCs and PKB serve as important positive regulators of insulin-stimulated glucose metabolism, whereas mechanisms that result in the activation of DAG-sensitive PKCs serve mainly as negative regulators of insulin signaling through PI3K. Atypical PKCs and PKB are rapidly activated by insulin in adipocytes, liver, skeletal muscles, and other cell types by a mechanism requiring PI3K and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), which, in conjunction with PIP3, phosphorylates critical threonine residues in the activation loops of atypical PKCs and PKB. PIP3 also promotes increases in autophosphorylation and allosteric activation of atypical PKCs. Atypical PKCs and perhaps PKB appear to be required for insulin-induced translocation of the GLUT 4 glucose transporter to the plasma membrane and subsequent glucose transport. PKB also appears to be the major regulator of glycogen synthase. Together, atypical PKCs and PKB serve as a potent, integrated PI3K/PDK-1-directed signaling system that is used by insulin to regulate glucose metabolism.


1997 ◽  
Vol 272 (1) ◽  
pp. E7-E17 ◽  
Author(s):  
T. Ploug ◽  
X. Han ◽  
L. N. Petersen ◽  
H. Galbo

Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport was reduced at least 86 and 49%, respectively, in both the soleus and red and white gastrocnemius muscles. In contrast, PTX treatment was much less efficient. Impairment of glucose transport appeared to develop 10-15 h after CTX administration, which coincided with development of hyperglycemia despite hyperinsulinimia, increased plasma free fatty acid levels, increased adenosine 3',5'-cyclic monophosphate (cAMP) concentrations in muscle, but no difference in plasma catecholamines. Twenty-five hours after CTX treatment, GLUT-4 protein in both soleus and red gastrocnemius muscles was decreased, whereas no change in GLUT-1 protein content was found. In contrast, GLUT-4 mRNA was unchanged, but transcripts for GLUT-1 were increased > or = 150% in all three muscles from CTX-treated rats. The findings suggest that CTX via increased cAMP impairs basal as well as insulin- and contraction-stimulated muscle glucose transport, at least in part from a decrease in intramuscular GLUT-4 protein.


2005 ◽  
Vol 288 (6) ◽  
pp. E1188-E1194 ◽  
Author(s):  
Betsy B. Dokken ◽  
Julie A. Sloniger ◽  
Erik J. Henriksen

Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 μM CT118637, Ki < 10 nM for GSK3α and GSK3β). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced ( P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR β-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3β serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.


2002 ◽  
Vol 282 (6) ◽  
pp. E1214-E1221 ◽  
Author(s):  
Jonathan S. Fisher ◽  
Lorraine A. Nolte ◽  
Kentaro Kawanaka ◽  
Dong-Ho Han ◽  
Terry E. Jones ◽  
...  

We varied rates of glucose transport and glycogen synthase I (GS-I) activity (%GS-I) in isolated rat epitrochlearis muscle to examine the role of each process in determining the rate of glycogen accumulation. %GS-I was maintained at or above the fasting basal range during 3 h of incubation with 36 mM glucose and 60 μU/ml insulin. Lithium (2 mM LiCl) added to insulin increased glucose transport rate and muscle glycogen content compared with insulin alone. The glycogen synthase kinase-3β inhibitor GF-109203x (GF; 10 μM) maintained %GS-I about twofold higher than insulin with or without lithium but did not increase glycogen accumulation. When %GS-I was lowered below the fasting range by prolonged incubation with 36 mM glucose and 2 mU/ml insulin, raising rates of glucose transport with bpV(phen) or of %GS-I with GF produced additive increases in glycogen concentration. Phosphorylase activity was unaffected by GF or bpV(phen). In muscles of fed animals, %GS-I was ∼30% lower than in those of fasted rats, and insulin-stimulated glycogen accumulation did not occur unless %GS-I was raised with GF. We conclude that the rate of glucose transport is rate limiting for glycogen accumulation unless %GS-I is below the fasting range, in which case both glucose transport rate and GS activity can limit glycogen accumulation.


1995 ◽  
Vol 269 (3) ◽  
pp. R544-R551 ◽  
Author(s):  
X. Han ◽  
T. Ploug ◽  
H. Galbo

A diet rich in fat diminishes insulin-mediated glucose uptake in muscle. This study explored whether contraction-mediated glucose uptake is also affected. Rats were fed a diet rich in fat (FAT, 73% of energy) or carbohydrate (CHO, 66%) for 5 wk. Hindquarters were perfused, and either glucose uptake or glucose transport capacity (uptake of 3-O-[14C]-methyl-D-glucose (40 mM)) was measured. Amounts of glucose transporter isoform GLUT-1 and GLUT-4 glucose-transporting proteins were determined by Western blot. Glucose uptake was lower (P < 0.05) in hindlegs from FAT than from CHO rats at submaximum and maximum insulin [4 +/- 0.4 vs. 5 +/- 0.3 (SE) mumol.min-1.leg-1 at 150 microU/ml insulin] as well as during prolonged stimulation of the sciatic nerve (4.4 +/- 0.4 vs. 5.6 +/- 0.6 mumol.min-1.leg-1). Maximum glucose transport elicited by insulin (soleus: 1.7 +/- 0.2 vs. 2.6 +/- 0.2 mumol.g-1.5 min-1, P < 0.05) or contractions (soleus: 1.8 +/- 0.2 vs. 2.6 +/- 0.3, P < 0.05) in red muscle was decreased in parallel in FAT compared with CHO rats. GLUT-4 content was decreased by 13-29% (P < 0.05) in the various fiber types, whereas GLUT-1 content was identical in FAT compared with CHO rats. It is concluded that a FAT diet reduces both insulin and contraction stimulation of glucose uptake in muscle and that these effects are associated with diminished skeletal muscle glucose transport capacities and GLUT-4 contents.


Physiology ◽  
1995 ◽  
Vol 10 (1) ◽  
pp. 22-29 ◽  
Author(s):  
MM Mueckler

Experiments with transgenic mice overexpressing glucose transporter isoforms demonstrate the preeminence of the transport step with respect to muscle glucose disposal and whole body glucose homeostasis. These studies suggest the feasibility of controlling diabetic hyperglycemia by pharmacological or genetic enhancement of muscle glucose transport.


Sign in / Sign up

Export Citation Format

Share Document