scholarly journals Aerobic training and cutaneous vasodilation in young and older men

1999 ◽  
Vol 86 (5) ◽  
pp. 1676-1686 ◽  
Author(s):  
Carla M. Thomas ◽  
Jane M. Pierzga ◽  
W. Larry Kenney

To determine the effect and underlying mechanisms of exercise training and the influence of age on the skin blood flow (SkBF) response to exercise in a hot environment, 22 young (Y; 18–30 yr) and 21 older (O; 61–78 yr) men were assigned to 16 wk of aerobic (A; YA, n = 8; OA, n = 11), resistance (R; YR, n = 7; OR, n = 3), or no training (C; YC, n = 7; OC, n = 7). Before and after treatment, subjects exercised at 60% of maximum oxygen consumption (V˙o 2 max) on a cycle ergometer for 60 min at 36°C. Cutaneous vascular conductance, defined as SkBF divided by mean arterial pressure, was monitored at control (vasoconstriction intact) and bretylium-treated (vasoconstriction blocked) sites on the forearm using laser-Doppler flowmetry. Forearm vascular conductance was calculated as forearm blood flow (venous occlusion plethysmography) divided by mean arterial pressure. Esophageal and skin temperatures were recorded. Only aerobic training (functionally defined a priori as a 5% or greater increase inV˙o 2 max) produced a decrease in the mean body temperature threshold for increasing forearm vascular conductance (36.89 ± 0.08 to 36.63 ± 0.08°C, P < 0.003) and cutaneous vascular conductance (36.91 ± 0.08 to 36.65 ± 0.08°C, P < 0.004). Similar thresholds between control and bretylium-treated sites indicated that the decrease was mediated through the active vasodilator system. This shift was more pronounced in the older men who presented greater training-induced increases in V˙o 2 maxthan did the young men (22 and 9%, respectively). In summary, older men improved their SkBF response to exercise-heat stress through the effect of aerobic training on the cutaneous vasodilator system.

1998 ◽  
Vol 85 (1) ◽  
pp. 175-180 ◽  
Author(s):  
D. L. Kellogg ◽  
S. R. Morris ◽  
S. B. Rodriguez ◽  
Y. Liu ◽  
M. Grossmann ◽  
...  

During dynamic exercise in the heat, increases in skin blood flow are attenuated in hypertensive subjects when compared with normotensive subjects. We studied responses to passive heat stress (water-perfused suits) in eight hypertensive and eight normotensive subjects. Forearm blood flow was measured by venous-occlusion plethysmography, mean arterial pressure (MAP) was measured by Finapres, and forearm vascular conductance (FVC) was calculated. Bretylium tosylate (BT) iontophoresis was used to block active vasoconstriction in a small area of skin. Skin blood flow was indexed by laser-Doppler flowmetry at BT-treated and untreated sites, and cutaneous vascular conductance was calculated. In normothermia, FVC was lower in hypertensive than in normotensive subjects ( P < 0.01). During heat stress, FVC rose to similar levels in both groups ( P > 0.80); concurrent cutaneous vascular conductance increases were unaffected by BT treatment ( P > 0.60). MAP was greater in hypertensive than in normotensive subjects during normothermia ( P < 0.05, hypertensive vs. normotensive subjects). During hyperthermia, MAP fell in hypertensive subjects but showed no statistically significant change in normotensive subjects ( P < 0.05, hypertensive vs. normotensive subjects). The internal temperature at which vasodilation began did not differ between groups ( P> 0.80). FVC is reduced during normothermia in unmedicated hypertensive subjects; however, they respond to passive heat stress in a fashion no different from normotensive subjects.


2001 ◽  
Vol 280 (4) ◽  
pp. H1496-H1504 ◽  
Author(s):  
Dan P. Stephens ◽  
Ken Aoki ◽  
Wojciech A. Kosiba ◽  
John M. Johnson

We tested for a nonnoradrenergic mechanism of reflex cutaneous vasoconstriction with whole body progressive cooling in seven men. Forearm sites (<1 cm2) were pretreated with: 1) yohimbine (Yoh; 5 mM id) to antagonize α-adrenergic receptors, 2) Yoh plus propranolol (5 mM Yoh-1 mM PR id) to block α- and β-adrenergic receptors, 3) iontophoretic application of bretylium tosylate (BT) to block all sympathetic vasoconstrictor nerve effects, or 4) intradermal saline. Skin blood flow was measured by laser Doppler flowmetry and arterial pressure by finger photoplethysmography; cutaneous vascular conductance (CVC) was indexed as the ratio of the two. Whole body skin temperature (TSK) was controlled at 34°C (water-perfused suit) for 10 min and then lowered to 31°C over 15 min. During cooling, vasoconstriction was blocked at BT sites ( P > 0.05). CVC at saline sites fell significantly beginning at TSK of 33.4 ± 0.01°C ( P <0.05). CVC at Yoh-PR sites was significantly reduced beginning at TSK of 33.0 ± 0.01°C ( P < 0.05). After cooling, iontophoretic application of norepinephrine (NE) confirmed blockade of adrenergic receptors by Yoh-PR. Because the effects of NE were blocked at sites showing significant reflex vasoconstriction, a nonnoradrenergic mechanism in human skin is indicated, probably via a sympathetic cotransmitter.


2017 ◽  
Vol 123 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Michael A. Francisco ◽  
Vienna E. Brunt ◽  
Krista Nicole Jensen ◽  
Santiago Lorenzo ◽  
Christopher T. Minson

The aim of the present study was to determine whether 10 days of repeated local heating could induce peripheral adaptations in the cutaneous vasculature and to investigate potential mechanisms of adaptation. We also assessed maximal forearm blood flow to determine whether repeated local heating affects maximal dilator capacity. Before and after 10 days of heat training consisting of 1-h exposures of the forearm to 42°C water or 32°C water (control) in the contralateral arm (randomized and counterbalanced), we assessed hyperemia to rapid local heating of the skin ( n = 14 recreationally active young subjects). In addition, sequential doses of acetylcholine (ACh, 1 and 10 mM) were infused in a subset of subjects ( n = 7) via microdialysis to study potential nonthermal microvascular adaptations following 10 days of repeated forearm heat training. Skin blood flow was assessed using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC) was calculated as laser-Doppler red blood cell flux divided by mean arterial pressure. Maximal cutaneous vasodilation was achieved by heating the arm in a water-spray device for 45 min and assessed using venous occlusion plethysmography. Forearm vascular conductance (FVC) was calculated as forearm blood flow divided by mean arterial pressure. Repeated forearm heating did not increase plateau percent maximal CVC (CVCmax) responses to local heating (89 ± 3 vs. 89 ± 2% CVCmax, P = 0.19), 1 mM ACh (43 ± 9 vs. 53 ± 7% CVCmax, P = 0.76), or 10 mM ACh (61 ± 9 vs. 85 ± 7% CVCmax, P = 0.37, by 2-way repeated-measures ANOVA). There was a main effect of time at 10 mM ACh ( P = 0.03). Maximal FVC remained unchanged (0.12 ± 0.02 vs. 0.14 ± 0.02 FVC, P = 0.30). No differences were observed in the control arm. Ten days of repeated forearm heating in recreationally active young adults did not improve the microvascular responsiveness to ACh or local heating. NEW & NOTEWORTHY We show for the first time that 10 days of repeated forearm heating is not sufficient to improve cutaneous vascular responsiveness in recreationally active young adults. In addition, this is the first study to investigate cutaneous cholinergic sensitivity and forearm blood flow following repeated local heat exposure. Our data add to the limited studies regarding repeated local heating of the cutaneous vasculature.


2002 ◽  
Vol 93 (4) ◽  
pp. 1215-1221 ◽  
Author(s):  
D. L. Kellogg ◽  
Y. Liu ◽  
K. McAllister ◽  
C. Friel ◽  
P. E. Pérgola

To test the hypothesis that bradykinin effects cutaneous active vasodilation during hyperthermia, we examined whether the increase in skin blood flow (SkBF) during heat stress was affected by blockade of bradykinin B2 receptors with the receptor antagonist HOE-140. Two adjacent sites on the forearm were instrumented with intradermal microdialysis probes for local delivery of drugs in eight healthy subjects. HOE-140 was dissolved in Ringer solution (40 μM) and perfused at one site, whereas the second site was perfused with Ringer alone. SkBF was monitored by laser-Doppler flowmetry (LDF) at both sites. Mean arterial pressure (MAP) was monitored from a finger, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Water-perfused suits were used to control body temperature and evoke hyperthermia. After hyperthermia, both microdialysis sites were perfused with 28 mM nitroprusside to effect maximal vasodilation. During hyperthermia, CVC increased at HOE-140 (69 ± 2% maximal CVC, P < 0.01) and untreated sites (65 ± 2% maximal CVC, P < 0.01). These responses did not differ between sites ( P > 0.05). Because the bradykinin B2-receptor antagonist HOE-140 did not alter SkBF responses to heat stress, we conclude that bradykinin does not mediate cutaneous active vasodilation.


2007 ◽  
Vol 102 (3) ◽  
pp. 890-895 ◽  
Author(s):  
Kerrie L. Moreau ◽  
Ashley R. DePaulis ◽  
Kathleen M. Gavin ◽  
Douglas R. Seals

Basal whole leg blood flow and vascular conductance are reduced in estrogen-deficient postmenopausal compared with premenopausal women. The underlying mechanisms are unknown, but oxidative stress could be involved. We studied 9 premenopausal [23 ± 1 yr (mean ± SE)] and 20 estrogen-deficient postmenopausal (55 ± 1 yr) healthy women. During baseline control, oxidized low-density lipoprotein (LDL), a marker of oxidative stress, was 50% greater in the postmenopausal women ( P < 0.001). Basal whole leg blood flow (duplex ultrasound of femoral artery) was 34% lower in the postmenopausal women because of a 38% lower leg vascular conductance ( P < 0.0001); mean arterial pressure was not different. Intravenous administration of a supraphysiological dose of the antioxidant ascorbic acid increased leg blood flow by 15% in the postmenopausal women as a result of an increase in leg vascular conductance (both P < 0.001), but it did not affect leg blood flow in premenopausal controls or mean arterial pressure in either group. In the pooled subjects, the changes in leg blood flow and leg vascular conductance with ascorbic acid were related to baseline plasma oxidized LDL ( r = 0.46 and 0.53, P < 0.01) and waist-to-hip ratio and total body fat ( r = 0.41–0.44, all P < 0.05). Our results are consistent with the hypothesis that oxidative stress contributes to chronic leg vasoconstriction and reduced basal whole leg blood flow in estrogen-deficient postmenopausal women. This oxidative stress-related suppression of leg vascular conductance and blood flow may be linked in part to increased total and abdominal adiposity.


1992 ◽  
Vol 73 (4) ◽  
pp. 1232-1237 ◽  
Author(s):  
C. G. Tankersley ◽  
D. H. Zappe ◽  
T. G. Meister ◽  
W. L. Kenney

Elevated body core temperature stimulates cutaneous vasodilation, which can be modified by nonthermal factors. To test whether hypohydration affects forearm vascular conductance discretely from relative alterations in heart rate (HR), eight trained cyclists exercised progressively for 20 min each at 60, 120, and 180 W [approximately 22, 37, and 55% of maximal cycling O2 consumption (VO2peak), respectively] in a warm humid environment (dry bulb temperature 30 degrees C; wet bulb temperature 24 degrees C). Esophageal temperature and forearm blood flow were measured every 30 s, and mean arterial pressure and HR were measured at rest and during each exercise intensity (minutes 15, 35, and 55). In the hypovolemic (HP) compared with the euvolemic (EU) state, blood volume was contracted by 24-h fluid restriction an average of 510 ml, and this difference was sustained throughout exercise. The esophageal temperature and HR responses were similar between EU and HP states at 60 and 120 W but were significantly (P < 0.05) higher in HP by the end of 180 W. In contrast, the forearm blood flow response was significantly (P < 0.05) depressed during exercise at 120 and 180 W in HP, whereas mean arterial pressure remained similar between conditions. When body core temperature is elevated in a hypohydrated state, forearm vascular conductance is reduced at exercise intensities of approximately 37% VO2peak, which is independent of relative changes in HR. These findings are consistent with the notion that during exercise an attenuated cutaneous vasodilation is elicited by alterations in regionalized sympathetic outflow, which is unaccompanied by activation of cardiac pacemaker cells.


1994 ◽  
Vol 77 (4) ◽  
pp. 1863-1867 ◽  
Author(s):  
C. G. Crandall ◽  
J. M. Johnson ◽  
V. A. Convertino ◽  
P. B. Raven ◽  
K. A. Engelke

To determine whether extended exposure to a simulation of microgravity alters thermoregulatory reflex control of skin blood flow, six adult males (mean age 40 +/- 2 yr) were exposed to 15 days of 6 degrees head-down tilt (HDT). On an ambulatory control day before HDT exposure and on HDT day 15, the core temperature of each subject was increased by 0.5–1.0 degree C by whole body heating with a water-perfused suit. Mean skin temperature, oral temperature (Tor), mean arterial pressure, and forearm blood flow were measured throughout the protocol. Forearm vascular conductance (FVC) was calculated from the ratio of forearm blood flow to mean arterial pressure. After HDT exposure, the Tor threshold at which reflex thermally induced increases in FVC began was elevated (36.87 +/- 0.06 to 37.00 +/- 0.09 degrees C; P = 0.043), whereas the slope of the Tor-FVC relationship after this threshold was reduced (13.7 +/- 2.3 to 9.5 +/- 1.1 FVC units/degrees C; P = 0.038). Moreover, normothermic FVC and FVC at the highest common Tor between pre- and post-HDT trials were reduced after HDT (normothermic: 4.2 +/- 0.5 to 3.0 +/- 0.4 ml.100 ml-1.min-1.100 mmHg-1, P = 0.04; hyperthermic: 12.4 +/- 1.0 to 7.8 +/- 0.7 ml.100 ml-1.min-1.100 mmHg-1, P < 0.001). These data suggest that HDT exposure reduces thermoregulatory responses to heat stress. The mechanisms resulting in such an impaired thermoregulatory response are unknown but are likely related to the relative dehydration that accompanies this exposure.


2001 ◽  
Vol 281 (2) ◽  
pp. R591-R595 ◽  
Author(s):  
Ken Aoki ◽  
Dan P. Stephens ◽  
John M. Johnson

It is not clear whether the diurnal variation in the cutaneous circulatory response to heat stress is via the noradrenergic vasoconstrictor system or the nonadrenergic active vasodilator system. We conducted whole body heating experiments in eight male subjects at 0630 (AM) and 1630 (PM). Skin blood flow was monitored by laser-Doppler flowmetry at control sites and at sites pretreated with bretylium (BT) to block noradrenergic vasoconstriction. Noninvasive blood pressure was used to calculate cutaneous vascular conductance. The sublingual temperature (Tor) threshold for cutaneous vasodilation was significantly higher in PM at control and at BT-treated sites (both P < 0.01), suggesting the diurnal shift in threshold depends on the active vasodilator system. The slope of cutaneous vascular conductance as a percentage of its maximum with respect to Tor was significantly lower in AM at control sites only. Also, in the AM, the slope at control sites was significantly lower than that at BT-treated sites ( P < 0.05), suggesting that the diurnal change in the sensitivity of cutaneous vasodilation depends on vasoconstrictor system function. Overall, the diurnal variation in the reflex control of skin blood flow during heat stress involves both vasoconstrictor and active vasodilator systems.


2013 ◽  
Vol 33 (12) ◽  
pp. 1850-1856 ◽  
Author(s):  
Agnes Boltz ◽  
Doreen Schmidl ◽  
René M Werkmeister ◽  
Michael Lasta ◽  
Semira Kaya ◽  
...  

In the choroid, there is evidence that blood flow does not only depend on ocular perfusion pressure (OPP), but also on absolute mean arterial pressure (MAP) and intraocular pressure (IOP). The present study included 40 healthy subjects to investigate whether such behavior is also found in the optic nerve head (ONH). The ONH blood flow (ONHBF) was studied using laser Doppler flowmetry during a separate increase in IOP and MAP as well as during a combined elevation. Mean arterial pressure was increased by isometric exercise and IOP by the suction method. During both, the change in ONHBF was less pronounced than the change in OPP indicating autoregulation. Correlation analysis was performed for the combined experiments after pooling all data according to IOP and MAP values. A correlation between ONHBF and MAP was found at IOPs 25 mm Hg ( P<0.001), but not at IOPs>25 mm Hg ( P=0.79). Optic nerve head blood flow and IOP were significantly correlated ( P<0.001), and ONHBF was only slightly dependent on MAP. The data of the present study indicate a complex regulation of ONHBF during combined changes in MAP and IOP. Our results may be compatible with myogenic mechanisms underlying autoregulation, and indicate better ONHBF regulation during an increase in MAP than during an increase in IOP.


1992 ◽  
Vol 73 (5) ◽  
pp. 1838-1846 ◽  
Author(s):  
J. A. Pawelczyk ◽  
B. Hanel ◽  
R. A. Pawelczyk ◽  
J. Warberg ◽  
N. H. Secher

We evaluated whether a reduction in cardiac output during dynamic exercise results in vasoconstriction of active skeletal muscle vasculature. Nine subjects performed four 8-min bouts of cycling exercise at 71 +/- 12 to 145 +/- 13 W (40-84% maximal oxygen uptake). Exercise was repeated after cardioselective (beta 1) adrenergic blockade (0.2 mg/kg metoprolol iv). Leg blood flow and cardiac output were determined with bolus injections of indocyanine green. Femoral arterial and venous pressures were monitored for measurement of heart rate, mean arterial pressure, and calculation of systemic and leg vascular conductance. Leg norepinephrine spillover was used as an index of regional sympathetic activity. During control, the highest heart rate and cardiac output were 171 +/- 3 beats/min and 18.9 +/- 0.9 l/min, respectively. beta 1-Blockade reduced these values to 147 +/- 6 beats/min and 15.3 +/- 0.9 l/min, respectively (P < 0.001). Mean arterial pressure was lower than control during light exercise with beta 1-blockade but did not differ from control with greater exercise intensities. At the highest work rate in the control condition, leg blood flow and vascular conductance were 5.4 +/- 0.3 l/min and 5.2 +/- 0.3 cl.min-1.mmHg-1, respectively, and were reduced during beta 1-blockade to 4.8 +/- 0.4 l/min (P < 0.01) and 4.6 +/- 0.4 cl.min-1.mmHg-1 (P < 0.05). During the same exercise condition leg norepinephrine spillover increased from a control value of 2.64 +/- 1.16 to 5.62 +/- 2.13 nM/min with beta 1-blockade (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document