scholarly journals Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches

2007 ◽  
Vol 102 (6) ◽  
pp. 2104-2111 ◽  
Author(s):  
Junya Takagawa ◽  
Yan Zhang ◽  
Maelene L. Wong ◽  
Richard E. Sievers ◽  
Neel K. Kapasi ◽  
...  

Efficacy of potential treatments for myocardial infarction (MI) is commonly assessed by histological measurement of infarct size in rodent models. In experiments involving an acute MI setting, measurement of the infarcted area in tissue sections of the left ventricle is a standard approach to determine infarct size. This approach has also been used in the chronic infarct setting to measure infarct area several weeks post-MI. We tested the hypothesis that, because wall thinning is known to occur in the chronic setting, the area measurement approach would be less appropriate. We compared infarct measurements in tissue sections based on 1) infarct area, 2) epicardial and endocardial infarct arc lengths, and 3) midline infarct arc length. Infarct sizes from all three measurement approaches correlated significantly with left ventricular ejection fraction and wall motion abnormality. However, the infarct size values derived from the area measurement approach were significantly smaller than those from the other two measurement approaches, and the range of values obtained was compressed 0.4-fold. The midline method allowed detection of the expected size differences between infarcts of variable severity resulting from proximal vs. distal ligation of the coronary artery. Segmental infarct size was correlated with segmental wall motion abnormality. We conclude that both area- and length-based measurements can be used to determine relative infarct size over a wide range of severity, although the area-based measurements are substantially more compressed due to wall thinning, and that the estimation of infarct midlines is a simple, reliable approach to infarct size assessment.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhuo Yuan ◽  
Junping Zhang ◽  
Cui Yang

This study investigated the effects ofLigusticum wallichiion IL-1βexpression in myocardium and central nervous system after AMI. AMI rat was administrated withLigusticum wallichiiextract. A series of assays were used to detect the effects ofLigusticum wallichiiextract on infarct size, left ventricular ejection fraction, expression of TLR-4, NF-κB, and IL-1βin myocardium, IL-1βexpression in serum and hypothalamus, and NPY expression in hypothalamus. We observed thatLigusticum wallichiiextract improved the left ventricular ejection fraction and reduced infarct area enlargement after AMI, by inhibiting the expression of IL-1βin myocardium, serum, and hypothalamus.Ligusticum wallichiiextract reduced the expression of IL-1βin myocardium by regulating TLR4-NF-κB signaling pathway and inhibited IL-1βin hypothalamus by regulating NPY mRNA expression.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Marcos Garces ◽  
C Rios-Navarro ◽  
L Hueso ◽  
A Diaz ◽  
C Bonanad ◽  
...  

Abstract Background Angiogenesis participates in re-establishing microcirculation after myocardial infarction (MI). Purpose In this study, we aim to further understand the role of the anti-angiogenic isoform vascular endothelial growth factor (VEGF)-A165b after MI and explore its potential as a co-adjuvant therapy to coronary reperfusion. Methods Two mice MI models were formed: 1) permanent coronary ligation (non-reperfused MI), 2) transient 45-min coronary occlusion followed by reperfusion (reperfused MI); in both models, animals underwent echocardiography before euthanasia at day 21 after MI induction. Serum and myocardial VEGF-A165b levels were determined. In both experimental MI models, functional and structural implication of VEGF-A165b blockade was assessed. In a cohort of 104 ST-segment elevation MI patients, circulating VEGF-A165b levels were correlated with cardiovascular magnetic resonance-derived left ventricular ejection fraction at 6-months and with the occurrence of adverse events (death, heart failure and/or re-infarction). Results In both models, circulating and myocardial VEGF-A165b presence was increased 21 days after MI induction. Serum VEGF-A165b levels inversely correlated with systolic function evaluated by echocardiography. VEGF-A165b blockage increased capillary density, reduced infarct size, and enhanced left ventricular function in reperfused, but not in non-reperfused MI experiments. In patients, higher VEGF-A165b levels correlated with depressed ejection fraction and worse outcomes. Conclusions In experimental and clinical studies, higher serum VEGF-A165b levels associates with a worse systolic function. Its blockage enhances neoangiogenesis, reduces infarct size, and increases ejection fraction in reperfused, but not in non-reperfused MI experiments. Therefore, VEGF-A165b neutralization represents a potential co-adjuvant therapy to coronary reperfusion. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): This study was funded by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” (Exp. PIE15/00013, PI17/01836, PI18/00209 and CIBERCV16/11/00486).


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
N. B. Spath ◽  
D. M. L. Lilburn ◽  
G. A. Gray ◽  
L. M. Le Page ◽  
G. Papanastasiou ◽  
...  

Background. Manganese-enhanced MRI (MEMRI) has the potential to identify viable myocardium and quantify calcium influx and handling. Two distinct manganese contrast media have been developed for clinical application, mangafodipir and EVP1001-1, employing different strategies to mitigate against adverse effects resulting from calcium-channel agonism. Mangafodipir delivers manganese ions as a chelate, and EVP1001-1 coadministers calcium gluconate. Using myocardial T1 mapping, we aimed to explore chelated and nonchelated manganese contrast agents, their mechanism of myocardial uptake, and their application to infarcted hearts. Methods. T1 mapping was performed in healthy adult male Sprague-Dawley rats using a 7T MRI scanner before and after nonchelated (EVP1001-1 or MnCl2 (22 μmol/kg)) or chelated (mangafodipir (22–44 μmol/kg)) manganese-based contrast media in the presence of calcium channel blockade (diltiazem (100–200 μmol/kg/min)) or sodium chloride (0.9%). A second cohort of rats underwent surgery to induce anterior myocardial infarction by permanent coronary artery ligation or sham surgery. Infarcted rats were imaged with standard gadolinium delayed enhancement MRI (DEMRI) with inversion recovery techniques (DEMRI inversion recovery) as well as DEMRI T1 mapping. A subsequent MEMRI scan was performed 48 h later using either nonchelated or chelated manganese and T1 mapping. Finally, animals were culled at 12 weeks, and infarct size was quantified histologically with Masson’s trichrome (MTC). Results. Both manganese agents induced concentration-dependent shortening of myocardial T1 values. This was greatest with nonchelated manganese, and could be inhibited by 30–43% with calcium-channel blockade. Manganese imaging successfully delineated the area of myocardial infarction. Indeed, irrespective of the manganese agent, there was good agreement between infarct size on MEMRI T1 mapping and histology (bias 1.4%, 95% CI −14.8 to 17.1 P>0.05). In contrast, DEMRI inversion recovery overestimated infarct size (bias 11.4%, 95% CI −9.1 to 31.8 P=0.002), as did DEMRI T1 mapping (bias 8.2%, 95% CI −10.7 to 27.2 P=0.008). Increased manganese uptake was also observed in the remote myocardium, with remote myocardial ∆T1 inversely correlating with left ventricular ejection fraction after myocardial infarction (r=−0.61, P=0.022). Conclusions. MEMRI causes concentration and calcium channel-dependent myocardial T1 shortening. MEMRI with T1 mapping provides an accurate assessment of infarct size and can also identify changes in calcium handling in the remote myocardium. This technique has potential applications for the assessment of myocardial viability, remodelling, and regeneration.


Open Heart ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. e001869
Author(s):  
Ingvild Maria Tøllefsen ◽  
Christian Shetelig ◽  
Ingebjørg Seljeflot ◽  
Jan Eritsland ◽  
Pavel Hoffmann ◽  
...  

ObjectiveInflammation has emerged as a new treatment target in patients with coronary artery disease and inflammation seems to play an important role in ischaemia/reperfusion injury that follows ST-elevation myocardial infarction (STEMI). We aimed to explore the role of acute and sustained interleukin 6 (IL-6) signalling, including soluble IL-6 receptor (IL-6R), with regard to infarct size, adverse remodelling and future cardiovascular events in patients with STEMI.MethodsWe included 269 patients with first-time STEMI, symptom duration <6 hours and treated with percutaneous coronary intervention. Blood sampling and cardiac MRI were performed in the acute phase and after 4 months. Clinical events and all-cause mortality were registered during 12-month and 70-month follow-up, respectively.ResultsIL-6 levels above median at all sampling points were significantly associated with increased infarct size and reduced left ventricular ejection fraction (LVEF). IL-6 levels in the highest quartile were at all sampling points associated with an increased risk of having an adverse clinical event during the first 12 months and with long-term all-cause mortality. IL-6R was not associated with infarct size, LVEF, myocardial salvage or long-term all-cause mortality.ConclusionAcute and sustained elevation of IL-6 measured 4 months after STEMI were associated with larger infarct size, reduced LVEF and adverse clinical events including all-cause mortality. The results add important information to the sustained role of inflammation in patients with STEMI and IL-6 as a potential target for long-term intervention.Trial registration numberNCT00922675.


2021 ◽  
Vol 10 (23) ◽  
pp. 5677
Author(s):  
Mohammad A. Almesned ◽  
Femke M. Prins ◽  
Erik Lipšic ◽  
Margery A. Connelly ◽  
Erwin Garcia ◽  
...  

The gut metabolite trimethylamine N-oxide (TMAO) at admission has a prognostic value in ST-elevation myocardial infarction (STEMI) patients. However, its sequential changes and relationship with long-term infarct-related outcomes after primary percutaneous coronary intervention (PCI) remain elusive. We delineated the temporal course of TMAO and its relationship with infarct size and left ventricular ejection fraction (LVEF) post-PCI, adjusting for the estimated glomerular filtration rate (eGFR). We measured TMAO levels at admission, 24 h and 4 months post-PCI in 379 STEMI patients. Infarct size and LVEF were determined by cardiac magnetic resonance 4 months after PCI. TMAO levels decreased from admission (4.13 ± 4.37 μM) to 24 h (3.41 ± 5.84 μM, p = 0.001) and increased from 24 h to 4 months (3.70 ± 3.86 μM, p = 0.026). Higher TMAO values at 24 h were correlated to smaller infarct sizes (rho = −0.16, p = 0.024). Larger declines between admission and 4 months suggestively correlated with smaller infarct size, and larger TMAO increases between 24 h and 4 months were associated with larger infarct size (rho = −0.19, p = 0.008 and rho = −0.18, p = 0.019, respectively). Upon eGFR stratification using 90 mL/min/1.73 m2 as a cut-off, significant associations between TMAO and infarct size were only noted in subjects with impaired renal function. In conclusion, TMAO levels in post-PCI STEMI patients are prone to fluctuations, and these fluctuations could be prognostic for infarct size, particularly in patients with impaired renal function.


Sign in / Sign up

Export Citation Format

Share Document