Effects of prior heavy-intensity exercise during single-leg knee extension on v̇o2 kinetics and limb blood flow
The effects of prior heavy-intensity exercise on O2 uptake (V̇o2) kinetics of a second heavy exercise may be due to vasodilation (associated with metabolic acidosis) and improved muscle blood flow. This study examined the effect of prior heavy-intensity exercise on femoral artery blood flow (Qleg) and its relationship with V̇o2 kinetics. Five young subjects completed five to eight repeats of two 6-min bouts of heavy-intensity one-legged, knee-extension exercise separated by 6 min of loadless exercise. V̇o2 was measured breath by breath. Pulsed-wave Doppler ultrasound was used to measure Qleg. V̇o2 and blood flow velocity data were fit using a monoexponential model to identify phase II and phase III time periods and estimate the response amplitudes and time constants (τ). Phase II V̇o2 kinetics was speeded on the second heavy-intensity exercise [mean τ (SD), 29 ( 10 ) s to 24 ( 10 ) s, P < 0.05] with no change in the phase II (or phase III) amplitude. Qleg was elevated before the second exercise [1.55 (0.34) l/min to 1.90 (0.25) l/min, P < 0.05], but the amplitude and time course [τ, 25 ( 13 ) s to 35 ( 13 ) s] were not changed, such that throughout the transient the Qleg (and ΔQleg/ΔV̇o2) did not differ from the prior heavy exercise. Thus V̇o2 kinetics were accelerated on the second exercise, but the faster kinetics were not associated with changes in Qleg. Thus limb blood flow appears not to limit V̇o2 kinetics during single-leg heavy-intensity exercise nor to be the mechanism of the altered V̇o2 response after heavy-intensity prior exercise.